Jon Discussion 13 1

Wednesday, August 1, 2018 9:39 AM

Cathe 16 cuthe
™M S ¢

wche for
918

T8 3 code Ao Fbgc@lyf

Virtual Memory Overview

Virtual address (VA): What your program uses

‘ Virtual Page Number

‘ Page Offset ‘

Physical address (PA): What actually determines where in memory to

‘ Physical Page Number

‘ Page Offset

The Big Picture: Logical Flow

Translate VA to PA using the TLB and Page Table. Then use

PA to access memory as the program intended.

Pages

A chunk of memory or disk with a set size. Addresses in
the same virtual page get mapped to addresses in the
same physical page. The page table determines the

mapping.

The Page Table

RALTE e

for 1

(N

[Caches
RAM

Ok

Op\234

TN |
go\b_, S/ 7l 7277

With 4 KiB pages and byte addresses, 2P °ffsetbits) = 4096, so page offset bits = 12.

Data

i H
V. Addr L P. Addryl ‘
CPU 1 !:L_ TLB | ! Cache | |
—
N ol
! | | u :
! 1 ! 1
! 1 ! 1
) { | !
1 | Page { ! i
V| Table |1 } | Memory | ¢
! 1 ! 1
) { \
i Trar&sr:?ion E i Mzmni(:ry \S -——9
! 1 ! 1
) | !]
' Meiusry

Index = Virtual Page Number

(VPN) (not stored)
0

Page Page Permission Bits
Valid | Dirty (read, write, ...)

Physical Page Number (PPN)

1
2

(Max virtual page number)

Each stored row of the page table is called a page table entry (the grayed section is the first page
table entry). The page table is stored in memory; the OS sets a register telling the hardware the
address of the first entry of the page table. The processor updates the “page dirty” in the page
table: “page dirty” bits are used by the OS to know whether updating a page on disk is
necessary. Each process gets its own page table.

e Protection Fault--The page table entry for a virtual page has permission bits that prohibit

the requested operation

e Page Fault--The page table entry for a virtual page has its valid bit set to false. The entry is

not in memory.

The Translation Lookaside Buffer (TLB)

A cache for the page table. Each block is a single page table entry. If an entry is not in the
TLB, it's a TLB miss. Assuming fully associative:

TLB Entry Tag = Virtual Page Number

Valid

The Big Picture Revisited

CPU

V. Addr, l P. Add
; ! - > Cache
Trap

Page Table Entry

Page Dirty | Permission Bits

TLB Entries

Page

P. Addr |

Data

Data

Table

Memory

Physical Page Number

Exercises:

. . L 5 _
ﬂwhat are three specific benefits of using vw e _WMS

) every projram has full 0407 <
) o dodon

1) provectn
y3) llusth of do memey

2) What should happen to the TLB when a new value is loaded into the page table
address register?

o '@t"‘S&l' 31"“’}-
¢ o ol

3) A processor has 16-bit addresses, i256 byte pages,)and an 8-entry fully associative TLB
with LRU replacement (the LRU field is Ad encodes the order in which pages were
accessed, 0 being the most recent). At some time instant, the TLB for the current process
is the initial state given in the table below. Assume that all current page table entries are

in the initial TLB. Assume also that all pages can be read from and written to. Fill in the

finaT state of the TLB according to the access pattern below. 7!.
UPN - dohol bibs - poge offse

Free physical pages:(0x1§‘> s l é, - ? = <D|/

Access pattern:

Read oo] VPN Dl]{\ it

Q\ _____-; Write 0x1301 wIN: Ox(3 miss
Write 0x20ae !2’3 %
rite X VPN: O m
l’lj ;Zaz gxiszz uPN: O&ZO f\hs’
- Write__ | 0x3415 mniss
/
(9 Initial TLB
VPN PPN Valid Dirty LRU
([oxo1 Ox11 1 1 0
0000 2 00007 o || e | 7
0x10 0x13 1 1 1
g 0x20 0x12 1 0 5
0O BNy £ || F | 7
Ox11 Ox14 1 0 4
Oxac 0x15 1 1 2
%“El g)’l{ 1 2\ 3
(
Final TLB ¥ LeLS eV G
VPN PPN Valid Dity | LRU g &
oo | oxl[] ! L | §
N TIE L2 | 2 é
N | axl OS] l 6 (. :
oB 0x(? [l l 6 9.
Ok | O}g| | 1 2 l 1
oxi] oxl4| | o U 3 >
OxeC| 651 | L | 7 o
Ox#| OwA l L D

w10

. Data race and Atomic operations.

The benefits of multi-threading programming come only after you understand concurrency. Here are two
mOost COMMOoN CONCUITENCy issues:

e Cache-incoherence: each hardware thread has its own cache, hence data modified in one thread
may not be immediately reflected in the other. The can often be solved by bypassing cache and
writing directly to memory, i.c. using volatile keyword in many languages.

e The famous Read-modify-write: Read-modify-write is a very common pattern in programming.
In the context of multi-thread programming, the interleaving of R,M,W stages often produces a
lot of issues.

To solve problem with Read-modify-write, we have to rely on the idea of undisrupted execution.

In RISC-V, we have two categories of atomic instructions:
e Load-reserve, store-conditional (undisrupted execution across multiple instructions)
e Amo.swap (single, undisrupted memory operation) and other amo operations.

Both can be used to achieve atomic primitives, here are two examples.

Test-and-set Compare-and-swap
Start:addi t@ xe 1 #locked state is 1 #expect old value in al,
amoswap.w.aq tl te (ao) #desired new value in a2

bne t1 x@ Start #if the lock is not Start:1lr a3 (ae)
#free, retry bne a3 al Fail #CAS fail

sc a3 a2 (aov)

. #critical section bnez a3 Start #retry if store 'F;idﬂd
" ‘ e
amoswap.w.rl x0 x0 a0 #release lock - #critical section K_
amoswap.w.rl x© x0 ae
Fail: #failed CAS /!/ ac_Cesf

| &

Instruction definitions: ¢~ acuss

e Load-reserve: Loads the four bytes from memory at address x[rs1], writes them to x[rd],
“Sign-extending the result, and TCTISTeTs a feservation on that memory word
e Store-conditional: Stores the four bytes in register x[rs2] to memory at address x[rs1],
9(/ provided there exists a load Teservation on that memory address. Writes @ to x[rd] il the store
succeeded, or a nonzero error code otherwise. -_

e Amoswap: Atomically, let t be the value of the memory word at address x[rs1], then set that

memory word to x[rs2]. Set x[rd] to the sign extension of t.

Question: why do we need special instructions for these operations? Why can’t we use normal load and
store for 1r and sc? Why can’t we expand amoswap to a normal load and store?

