Jon Dis 12 Notes

CS 61C Pipelining
FaH 2018 Discussion 12: November 12, 2018

o e

| Plpellnlng Reglsters)/VQ\‘_Q rtq 4{5

In order to pipeline, we add registers between the five datapath stages. Label each

of the five stages (IF, ID, EX, MEM, and WB) on the diagram below. M
ME

N ———'—‘r'\—/”ﬁ \")E

— D i)
=
wh ,\
2
inst[19:15)| Read Wit .
+
pach DA Read
Datal PC
inst(24:20] Read 1
R Inpt
ea 1,0 0
Dat
i ALU
Write | Read .
inst(11:7)] Reg put Address
’ Memory L memi,
i i 2 Data
egister File| 0 InoutE
Im Write Data
ite 1
— Data
Memory
Write
= rant Enable

wst Led
le/ \V\+0 C®/‘+'“\

{ L ira.p
e TV
=)

inst[31:0]

What is the purpose of the new registers? (J/\ %‘17/
& o I
stort datn FLeep (ons30rt OTLL oy i tat pie

Why do we add +4 to the PC again in the memory stage?

dortd need exim rfquélﬂfs len Pmmy Hhwgh 52¢ @5
Why do we need to save the instruction in a register multiple times?

Needs Covvect cohol 6?7n0l/ Se¢ B

2 Pipelining
2 Performance Analysis

Register clk-to-q 30 ps Branch comp. 75 ps Memory write 200 ps
Register setup 20 ps ALU 200 ps RegFile read 150 ps
Mux 25 ps Memory read 250 ps RegFile setup 20 ps

With the delays provided above for each of the datapath components, what would
be the fastest possible clock time for a single cycle datapath?

See sdlin a—Vrcv AS WS q(() ps = | 05(7#2_

What is the fastest possible clock time for a pipelined datapath?

T Hime B eadh stuge adp: G Tt
~ S0y (S §.h9|e cy(& b la/w Nq:él(’fs of all Ssju%
<

What is the speedup from the single cycle datapath to the pipelined datapath? - 2
Why is the speedup less than 57 M.EM

%0 _ S peoghU
o = X P
3Hazarcls

One of the costs of pipelining is that it introduces three types of pipeline hazards:
structural hazards, data hazards, and control hazards.

Structural Hazar(ls

Structural hazards occur when more than one instruction needs to use the same
datapath resource at the same time. There are two main causes of structural haz-

ards:

Register File The register file is accessed both during ID, when it is read, and
during WB, when it is written to. We can solve this by having separate
read and write ports. To account for reads and writes to the same register,
processors usually write to the register during the first half of the clock cycle,
and read from it during in the second half. This is also known as double

. —
pumping.

Memory Memory is accessed for both instructions and data. Having a sepa-
rate instruction memory (abbreviated IMEM) and data memory (abbreviated
DMEM) solves this hazard.

Something to remember about structural hazards is that they can always be resolved
by adding more hardware.

Pipelining 3

Data Hazards

Data hazards are caused by data dependencies between instructions. In CS 61C,
where we will always assume that instructions are always going through the pro- m
cessor in order, we see data hazards when an instruction reads a register before a e Xa

previous instruction has finished writing to that register.

~—

’__—
o Q l
O
Forwarding
P —
Most data hazards can be resolved by forwarding, which is when the result of the D/ M,U

EX or MEM stage is sent to the EX stage for a following instruction to use. Y' S\

Look for data hazards in the code below, and figure out how forwarding could be
used to solve them.

| Instruction || C1 | C2 % | C4 | C5 | C6 | Cc7 |
1. addi te, a0, -1 || IF D ((EX)| MEM | WB
S— !
2. and s2, t0, 20 IF [ID TEX ~|MEM | WB
3. sltiu a0, t0, 5 ID |#X | MEM | WB

—

| wxes bogheen
Lyrgard values (con N{WVE |

. .) . . 01“ V‘0+
How many instructions after the first addi instruction above could be affected a \/JB

¢
i ‘ .Z,V
potential data hazard created by this addi instruction? Fx ,\/LEAA ! /‘ Veaé'j
f

(.~ /A]: l’l%&
5 nshudiv R so T D} o

Imagine you are a hardware designer working on a CPU’s forwarding control logic.

2
You have the signals rs1, rs2, RegWEn, and rd for two instructions, ins ructi; Jic
and instruction n + 1. Write a condition you can check to see if there is a data (__B TF T D

hazard between the two instructions, in terms of these signals.

i€ ({6101} 0\ n) | o2 ot]) ==kl RN Euf237
//foram ek yalue '
wt“\ wr»h

sats - (Vg| Uge.S Wh \m|V\L> (ng\ vses INB v&1/> eVLO\’)l@C}

Look for data hazards in the code below. One of them cannot be solved with
forwarding—why? What can we do to solve this hazard?

| Instruction [ct [c2 Je3 Jca o5 e |[cr o8 | ,
1. addi s0, so, 1 || IF D EX | MEM | WB ") C@U’IT Wa{d
2. addi te, to, 4 IF 1D EX_ | MEM | WB |_~— ¢

3. 1w t1, 0(t0) IF | ID X | MEMA WB -(/‘,.\\Q

<7 4. add t2, t1, x0 IF D E)g&e\MEM WB (Od
%@)ﬁ%\au%\ <D te Tb Ex MEM LB "

20l NOP 3 L o i

XL

adld) ,)«Q) oo ol

NOG (Py Shull s ”& NO? /711
OAUAOLDQN o tfal worE)

Say you are the compiler and can re-order instructions to minimize data hazards

4 Pipelining

while guaranteeing the same output. How can you fix the code above?

NeW ovdler %‘3*1’L/
¢, JoiF Lapste himt
Control Hazards deQ(O{O’th Ma~y{ O(Zﬂ/— },\J)%S?

Control hazards are caused by jump and branch instructions, because for all
jumps and some branches, the next PC is not PC + 4, but the result of the compu-
tation completed in the EX stage. We could stall the pipeline for control hazards,
but this decreases performance.

o 6 ol
PC”\L (g,el— Ak of all Pre covmpnith gk me v)

Extra for Experlence

Given the RISC-V code above and a pipelined CPU with no forwarding, how many
hazards would there be? What types are each hazard? Consider all possible hazards

from all pairs of instructions.

How many stalls would there need to be in order to fix the data hazard(s)? What
about the control hazard(s)?

:V | Instruction H C1 ’ C2 | C3 | C4 | C5 | C6 | C7 | C8 ‘ C9 | -)ull-g
07}:’ 1. sub t1, s0@, sl IF 1D EX MEM | WB) 5 ”§
Ve 2. or 50, to, t1 IF D |7F [mED | WX | MEM K L4
VO‘A"’“ 3. sw s1, 100(s0) IF [0 |[EX |MEM B |ZD | EX |[MEM WR
Z{ 4. bgeu s0, s2, 1 IF D EX | MEM | WBZ | ZP [EX ..~
Con‘)h)l 5 5. add t2, x IF D EX | MEM | WB

y Sl RS
Only skl Ew
4 e hoadle Wy Branlh Y)”edld/‘aho Shalls
6 her Wit

Stall S)?y s (o&k\/ Ex of bmm(%)

