Jon 112 Dis 2

Tuesday, September 4, 2018 10:22 AM

CS 61C C Basics
FaH 2018 Discussion 2: September 3, 2018

1 C

C is syntactically similar to Java, but there are a few key differences:
1. C is function-oriented, not object-oriented; there are no objects.
2. C does not automatically handle memory for you.

e Stack memory, or things allocated the way you’re accustomed to: data is
garbage immediately after the function in which it was defined returns.

e Heap memory, or things allocated with malloc, calloc, or realloc com-

mands: data is freed only when the programmer explicitly frees it!

e In any case, allocated memory always holds garbage until it is initialized! SCP

3. C uses pointers explicitly. *p tells us to use the value that p points to, rather W
than the value of p, and &x gives the address of x rather than the value of x.

On the left is the memory represented as a box-and-pointer diagram.
Y Tep p g vali e

On the right, we see how the memory is really represented in the computer. ZX X

OXFFFFFFFF OXFFFFFFFF

'\A VV\ OxF93209B0 | x=0x61C 0xF93209B0 0x61C X

0xF93209AC 0xF93209AC 0Ox2A

0xF9320904 | OxF93209AC
0xF9320900 | OxF9320904

0x00000000 0x00000000
P Po;\zr}'s Fo

Let’s assume that intx p is located at 0xF9320904 and int x is located at
0xF93209B0. As we can observe:

0xF9320904
0xF9320900

e *p should return 0x2A (4219).

e p should returq 0xF93209AC. ")
@hould return 0x61C.

e &x should return 9xF93209B0.
Let’s say we have an int *xpp that is located at @xF9320900.

1.1| What does pp evaluate to? How about *pp? What about **pp?
el

PP pp=0xF 93206904

> v
9-»]3—*[7 Xpp = P = 0xFa3209AC
Xxpp=Y = Ox A

2 O Basics Py CO} ¥ Gry [[jﬁ___ 4 or\(CV\—J

The following functions are syntactically-correct C, but written in an incomprehen-
sible style. Describe the behavior of each function in plain English.

,(a) ’Recall that the ternary operator evaluates the condition before the ? and re-

turns the value before the colon (:) if true, or the value after it if false.

1 int foo(int *arr, size_t n) {

3}

(b) Recall that the negation operator, !, returns 0 if the value is non-zero, and 1
if the value is 0. The ~ operator performs a bitwise not (NOT) operation.

1 int bar(int xarr, size_t n) {

2 int sum = 0, i;

3 for (i =n; i>0; i--)
4 sum += larr[i - 1];
5 return “sum + 1;

6 2

IRecall that " is the bitwise exclusive-or (XOR) operator.

]
|T 1)

arse

2 return n ? ar,"r[@] + foo(arr + 1, n - 1) : 0; //SU,M '{‘\\VS']' V’ '\/0"5 d/, avmy
-

1 void baz(er\t x, int y) { y I.DCM lb)71/\’_ No ?pfg'l S"I\yﬁ Cl’lﬂl/l?{

: aexcy SWGp X &

3 y=x"1y;

5 %

Implement the following functions so that they work as described.

(a) Swap the value of two ints. Remain swapped after returning from this function.
void swap((W ¥X, nt ¥y>
*X = MY Ay \ CO(,W{L%])I
*y:ixnfy N 2
x= *x* %y W 4,
K swap (£,2,£.4.)

(b) Return the number of bytes in a string. Do not use strlen.

int mystrlen(

X \—_—\—\,
©orr) An=0 X= XY
QAO:V\ Y = A X*0 =X
2 Programming with Pointers X = Q(Ay) AY= OA-y =y

y ")~

C Basics 3

The following functions may contain logic or syntax errors. Find and correct them.

Returns the sum of all the elements in summands. hf‘hA(Vl S IZ S[}EJ

(a)

2

int sum(int* summands)nin S‘.(Z—C-—k w)

int sum = 0; 78} *
for (int i = 0; i < sizeof(sdMmandsy; i++) ~7 \VYI' *
sum += x(summands + i); \V\.-’_*

return sum;

Increments all of the letters in the string which is stored at the front of an
array of arbitrary length, n >= strlen(string). Does not modify any other
parts of the array’s memory.

void increment(charx string, int n) {
for (int i = 0; i < n; i++)

*(string + i)++;

Copies the string src to dst.

void copy(char* src, char* dst) {
while (*dst++ = *SrC++>;

Overwrites an input string src with “61C is awesome!” if there’s room. Does
nothing if there is not. Assume that length correctly represents the length of
src.

void cs6l1c(char*x src, size_t length) { Cl/la‘/ ¥§'rc /‘
R

char *xsrcptr ,.‘X(eplaceptr ;

char replacement[16] = "61C is awesome!";
srcptr = src; Cl/\ar* ng

replaceptr = replacement;
if (length >= 16) {
for (int i = 0; i < 16; i++)
*srcptr++ = xreplaceptr++;

¢ zeof 7

™ S6rR

Chov Hrep

/V€P

4 C Basics + /-.
F..F
3 Memory Management g _/ST'('IT_-\
p—|=t
For each part, choose one or more of the following memory segments where the data /{\ (i /’ly)
could be located: code, static, heap, stack.

(a) Static variables 6.}'&‘)(—12- Llealr’

(b) Local variables SI-)Z(Ck’ S'!"ah\l

(c) Global variables S‘lp‘h C
(

)
)
)
d) Constants gh‘hi g }Z(C lc .H De (\he‘a CL'de, COde'
)
)
)

e) Machine Instructions OOde_ OO -.. OO0

(
(f) Result of malloc heaP Ll o\ y
(g) String Literals Q'J-a-h C s (Q'}'UC{C) (: 0!"(: j - g-’y')’ly
Write the code necessary to allocate memory on the heap in the following scenarios

(a) An array arr of k integers

(b) A string str containing p characters

(¢) An n x m matrix mat of integers initialized to zero.

Suppose we've defined a linked list struct as follows. Assume *1st points to the
first element of the list, or is NULL if the list is empty.

struct 11_node {
int first;
struct 11_nodex rest; hco.d

} rode heod pocle
Implement prepend, which adds one new value to the front of the hnke list.
void prepend(struct 11_nodex* 1lst, int value)) 7 D j] ! I ,‘
(o)

Implement free_11, which frees all the memory consumed by the linked list.

void free_ll(struct 11_nodex* 1lst)

