Tuesday, November 6, 2018 11:04 AM Single-Cycle Datapath CS 61C Fall 2018 Discussion 11: November 5, 2018 stade rs2 rsl Single-Cycle CPU Code For this worksheet, we will be working with the following single-cycle CPU datapath: 1.1 ALU IMEM Imm Gen Br Comp DWEN MemRW PCSe ALUSe 121 default O (a) On the datapath above, fill in each **round** box with the name of the datapath component, and each square box with the name of the control signal. (b) Explain what happens in each datapath stage. - get ihst from mem Brlt IF Instruction Fetch - figure out what to do w/ inst ${f ID}$ Instruction Decode - computations
- store/read data from mem
- write result to reg EX Execute **MEM** Memory \mathbf{WB} Writeback

2 Single-Cycle Datapath

[1.2] Fill out the following table with the control signals for each instruction based on the datapath on the previous page. Wherever possible, use * to indicate that what this signal is does not matter.

									,,		
	BrEq	BrLT	PCSel	ImmSel	BrUn	ASel	BSel	ALUSel	MemRW	RegWEn	WBSel
add	¥	*	0	*	*	0	0	adel	0	1	
ori										,	•
lw					_					_	V
sw	¥	₩		S	*	0	(add]	0	*
beq	•	•									
jal	*	3 k ∣	1		¥	١ ١	li	add	\sim		()
$\overline{\text{bltu}}$	Δ.	—		0.5	7	, ,	'	Moor		1	
		1	1	I	l	1	1	1	I	I	ı

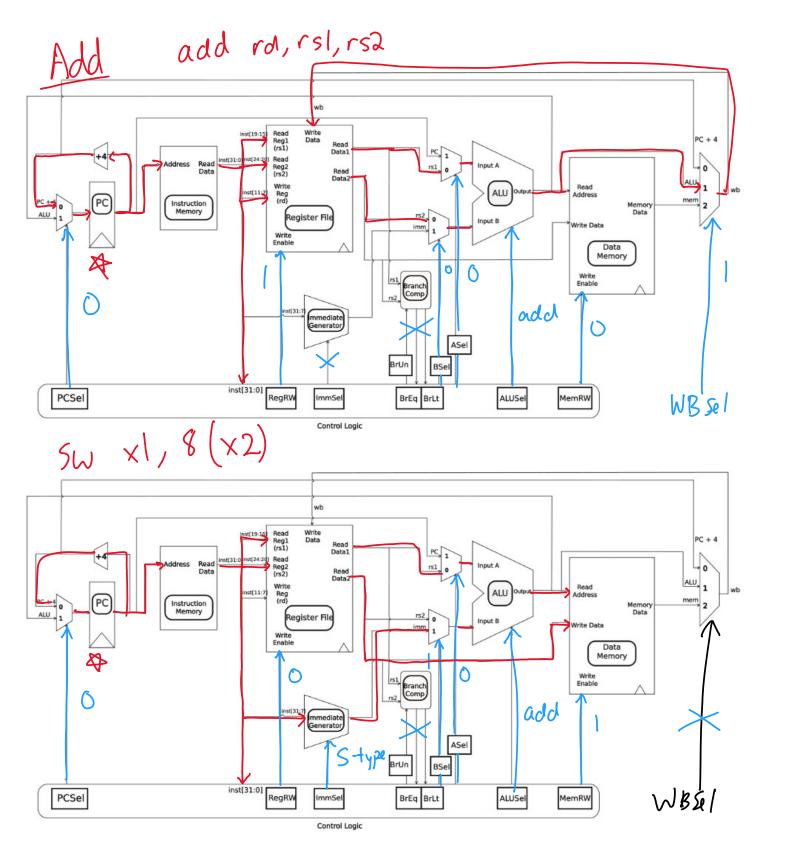
1.3 Clocking Methodology

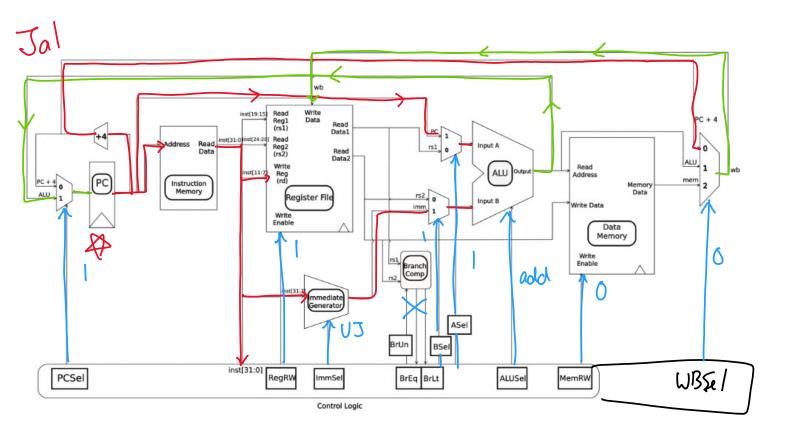
- A state element is an element connected to the clock (denoted by a triangle at the bottom). The **input signal** to each state element must stabilize before each **rising edge**.
- The **critical path** is the longest delay path between state elements in the circuit. If we place registers in the critical path, we can shorten the period by **reducing the amount of logic between registers**.

For this exercise, assume the delay for each stage in the datapath is as follows:

(a) Mark the stages of the datapath that the following instructions use and calculate the total time needed to execute the instruction.

	IF	ID	EX	MEM	WB	Total Time		Slowest
add	X	X	X		X	600	/	·
lw sw beq jal	× × ×	X X	× X X	×	×	800 PS		
bltu		•				600		


- (b) Which instruction (s) exercise the critical path?
- (c) What is the fastest you could clock this single cycle datapath?


1/800ps = 1.256Hz

. 1

- (d) Why is the single cycle datapath inefficient?
- (e) How can you improve its performance? What is the purpose of pipelining?

multinst. at Same time

