Jon 101 Dis 9

Wednesday, October 24, 2018 2:01 PM

CS 61C Paraﬂelism, SDS
FaH 2018 Discussion 9: October 22, 2018

1 Thread-Level Parallelism

As powerful as data level parallelization is, it can be quite inflexible, as not all
applications have data that can be vectorized. Multithreading, or running a single
piece of software on multiple hardware threads, is much more powerful and versatile.
OpenMP provides an easy interface for using multithreading within C programs.
Some examples of OpenMP directives:

The parallel directive indicates that each thread should run a copy of the code

within the block. If a for loop is put within the block, every thread will run every

iteration of the for loop.

#pragma omp parallel {

o Ahveads dovy woviC

The parallel for directive will split up iterations of a for loop over various threads.

\;5q§4b

Every thread will run different iterations of the for loop. The following two code

lO)
snippets are equivalent. Q’ D \ D\ —é q (

#pragma omp parallel for #pragma omp parallel { &
for (int i = 0; i < n; i++) { #pragma omp for

H for (int i =0; i <n; i++) { ... }
} 3
There are two functions you can call that may be useful to you:

e int omp_get_thread_num() will return the number of the thread executing

the code

WN —QC

e int omp_get_num_threads() will return the number of total hardware threads

executing the code

For each question below, state and justify whether the program is sometimes
incorrect, always incorrect, slower than serial, faster than serial, or none

of the above. Assume the default number of threads is greater than 1. Assume

. — —————— N—
no thread will complete before another thread starts executing. Assume arr is an

int[] of length n. ‘\ V\(_dm(:[-

(a) // Set element i of arr to i

#pragma omp parallel «F{,Sl@[oty Mwﬂ%f gcwe‘{'ﬁ’w_f

{

Q; i <n; it++)

for (int i

1]

arr[i] = i;

T (0_t
T

2 Parallelism, SDS 9_[/2. g g < é 7.

(b) // Set arr to be an array of Fibonacci numbers. COYN-C‘- @

arr[0] = 0;
arr[1]

' fomties
#pragma omp parallel for

for (int i = 2; i < n; i++)

arr[i] = arr[i-1] + arr[i - 27;

Iﬂ Corre C}-

(c) // Set all elements in arr to 9;

int i; le
#pragma omp parallel for S.

for (i =0; i <n; i++)
arr[i] = 0;

d
What potential issue can arise from this code?
-~

1 // Decrements element i of arr. n is a multiple of omp_get_num_threads() O ’ 1 3 (_/ S
2 #pragma omp parallel —— e —
_

3 {

—— 4 int threadCount = omp_get_num_threads(); q 'I"‘a(Q S}/la‘th

5 int myThread = omp_get_thread_num(); 0 (273

6 for (int i = 0; i < n; i++) { —] 8(
7 if (i % threadCount == myThread) arrlid—e=~arr[il; l A \g
8 } “~

O

9
R

(:% ?roo{l/ld')

// Assume n holds the length of arr
2 double fast_product(double *arr, int n) {
3 double product = 1;

4 #pragma omp parallel for {Ed U-CH)M

5 for (i =0; i <n; 1++) { Y‘U\C}Y"\U\ OWP (,n‘hcm\

6 product *= arr[lﬁ]
T)]')rodv\c}-: 4
8 return product;

5) DUA‘(A Q_ACQ,

(a) What is wrong with this code?

dunck
(b) Fix the code using #pragma omp critical & q le \7f0 .

(¢) Fix the code using #pragma omp reduction(operation: var)% ﬂ,\ M@
—————

\/’—'/V_o\'/ , L ~——

',l?/nd\u &0
N

2 Logic Gates

Label the following logic gates:

>0 D D

NOT AND owr

Convert the following to boolean expressions:

(a) NAND A%+NB+AR
o xor AR L AR
(© XNOR pB 4 BT

Create an AND gate using only NAND gates.

Pt

XOR

{0
0__.—-—-—

DD Py

NAND NOE XNO

AND ¢ AR
OR: A+Q

How many different two-input logic gates can there be? How many n-input logic

gates?

2

