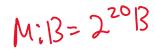
Wednesday, October 3, 2018 2:04 PM

CS 61C Fall 2018


## Caches II, Floating Point

Discussion 6: October 1, 2018

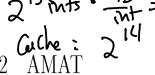
## Code Analysis

Given the follow chunk of code, analyze the hit rate given that we have a byteaddressed computer with a total memory of 1 MiB. It also features a 16 KiB Direct-Mapped cache with 1 KiB blocks.

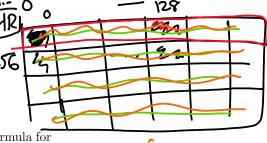
```
#define NUM_INTS 8192 // 2<sup>13</sup>
   int A[NUM_INTS]; 7/ A lives at 0x10000
   int i, total = 0;
   for (i = 0; i < NUM_INTS; i += 128)
for (i = 0; i < NUM_INTS; i += 128) {
    total += A[i]; // Line 2</pre>
```






0

1.1 How many bits make up a memory address on this computer?


What is the T:I:O breakdown?

10 = 10 bits I: log 16kiB = log16 = 4 bits Calculate the cache hit rate for the line marked Line 1: (i) T: 20 - 10 - 10 = 6  $128 \cdot 18 = 5128$ A(0): M
(if 128)
A(1287: H (if 128)

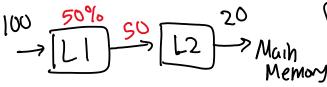
Calculate the cache hit rate for the line marked Line 2: MHMHMH... 0 = 50% HR



MHMH (same as above) 256 4



Recall that AMAT stands for Average Memory Access Time. The main formula for it is:


AMAT = Hit Time + Miss Rate \* Miss Penalty

We also have two types of miss rates, global and local. Global is calculated as: Fraction of ALL accesses that missed at that level over all accesses total. Whereas local is calculated: Fraction of ALL access that missed at that level over all access to that level total.

Second loop reverse HH --- HH | MH --- MH 2.100% + 5.50%

An L2\$, out of 100 total accesses to the cache system, missed 20 times. What is the global miss rate of L2\$?

misses here



75% HR

1053

$$GMRL2 = \frac{20}{100} = 20\%$$

2 Caches II, Floating Point

If L1\$ had a miss rate of 50%, what is the local miss rate of L2\$?

Suppose your system consists of:

- 1. An L1\$ that hits in 2 cycles and has a local miss rate of 20%
- 2. An L2\$ that hits in 15 cycles and has a global miss rate of 5%

3. Main memory hits in 100 cycles

What is the local miss rate of L2\$?

0.05 X

LMP = GMR

What is the AMAT of the system? 15 + 6.25 (100) = 2Suppose we want to reduce the AMAT of the system to 8 cycles or lower by adding in a L3\$. If the L3\$ has a local miss rate of 30%, what is the largest hit time that the L3\$ can have?

1.2+= 15+= 20.100 2+3+5=W

## Floating Point

The IEEE 754 standard defines a binary representation for floating point values using three fields:

- The sign determines the sign of the number (0 for positive, 1 for negative)
- The exponent is in biased notation with a bias of 127
- The significand or mantissa is akin to unsigned, but used to store a fraction instead of an integer

The below table shows the bit breakdown for the single precision (32-bit) represen-

| tation.                                                                                                  |                                                                                                                                                                                       |          | V 31             | •          |              |                |                 |             | ./       |  |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|------------|--------------|----------------|-----------------|-------------|----------|--|
| 1                                                                                                        | 8                                                                                                                                                                                     | 23       |                  |            |              |                | المماء          |             | <u>v</u> |  |
| Sign                                                                                                     | Exponent                                                                                                                                                                              | Mantis   | ssa/Significand, | Fraction / |              | i              | Whire           | 1 .         | 7        |  |
| <b>Value</b><br>For der                                                                                  | or normalized floats: $V_{a} = (-1)^{Sign} * 2^{Exp-Bias} * 1.$ significand <sub>2</sub> or denormalized floats: $V_{a} = (-1)^{Sign} * 2^{Exp-Bias+1} * 0.$ significand <sub>2</sub> |          |                  |            | +  ,         | 000 -<br>mants | 1               | exp-t       | nius+    |  |
| •                                                                                                        |                                                                                                                                                                                       | Exponent | Significand      | Meaning    |              | + (            | $\frac{000}{m}$ | , , ,   , } | k L      |  |
| hocat                                                                                                    | . \                                                                                                                                                                                   | 0        | Anything         | Denorm     | _            | برر            | . 000           |             |          |  |
|                                                                                                          | at 5                                                                                                                                                                                  | 1-254    | Anything         | Normal     | <b>—</b>     | . 51·          | in r            | runhssa     |          |  |
| Ghe                                                                                                      | χ,                                                                                                                                                                                    | 255      | 0                | Infinity   | <b>~</b>     |                |                 |             | V ()     |  |
|                                                                                                          | C                                                                                                                                                                                     | 255      | Nonzero          | NaN        | $\mathbf{k}$ | ~ <i>U</i> I   |                 | 00          | () ()    |  |
| How many zeroes can be represented using a float? $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                                                                                                                                                       |          |                  |            |              |                |                 |             |          |  |

| 3.2 | What is the largest finite positive value that float? O IIII III - NaN | t can be stored using a | single precision | 11                                      |    |
|-----|------------------------------------------------------------------------|-------------------------|------------------|-----------------------------------------|----|
| 3.3 | What is the smallest positive value that can                           |                         | \ \              | $(2-2^{-23}) \times 2^{12}$             | .7 |
| 3.4 | What is the smallest positive normalized v precision float?            | alue that can be stored |                  | .5 0.25                                 |    |
| 3.5 | Cover the following numbers from binary to                             | decimal or from decima  | al to binary:    | 2-1 2-3-4                               |    |
|     | • 0x00000000                                                           | • 39.5625               | (b) 1000°        | 0100 -                                  |    |
|     | • 8.25                                                                 | • 0xFF94BEEF            | ١٨٨٨             | \\ 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  |    |
|     | • 0x00000F00                                                           | ● -∞                    | 0100000          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |    |
|     | 4 Extra Stuff on Caches!                                               |                         | 3+127=130        | 00100000000000000000000000000000000000  | Ó٥ |

Heres some practice involving a 2-way set associative cache. This time we have an 8-bit address space, 8 B blocks, and a cache size of 32 B. Classify each of the following accesses as a cache hit (H), cache miss (M) or cache miss with replacement (R). For any misses, list out which type of miss it is.

| Address     | T/I/O | Hit, Miss, Replace |
|-------------|-------|--------------------|
| 0b0000 0100 |       |                    |
| 0b0000 0101 |       |                    |
| 0b0110 1000 |       |                    |
| 0b1100 1000 |       |                    |
| 0b0110 1000 |       |                    |
| 0b1101 1101 |       |                    |
| 0b0100 0101 |       |                    |
| 0b0000 0100 |       |                    |
| 0b1100 1000 |       |                    |

[4.2] What is the hit rate of our above accesses?