Wednesday, September 12, 2018 2:03 PM

CS 61C Fall 2018

RISC-V Intro

Discussion 3: September 10, 2018

RISC-V: A Rundown

RISC-V is an assembly language, which is comprised of simple instructions that each do a single task such as addition or storing a chunk of data to memory.

For example, on the left is a line of C code and on the right is a chunk of RISC-V code that accomplishes the same thing.

Can you figure out what each line in the RISC-V code is doing?

addi 51, 51, 4 su to,0(sl) too (ma) {

5/+4

Registers

In RISC-V, we have two methods of storing data, one of them is main memory, the other is through registers. Registers are much faster than using main memory, but are very limited in space (32-bits)

3 int main(){

Stuck

	Register(s)	Alt.	Description
>	x0	zero	The zero register, always zero
<u> </u>	x1	ra	The return address register, stores where functions should return
→	x2	sp	The stack pointer, where the stack ends
<u>></u>	x5-x7, x28-x31	t0-t6	The temporary registers
کر	x8-x9, x18-x27	s0-s11	The saved registers
رحہ	x10-x17	a0-a7	The argument registers, a0-a1 are also return value
	α .		

2.1 Can you convert each instruction's registers to the other form

add
$$\underline{s0}$$
, \underline{zero} , $\underline{a1}$ --> $\underbrace{a1}$ --> $\underbrace{a1}$ --> $\underbrace{a1}$ --> $\underbrace{a1}$ --> $\underbrace{a2}$ --> $\underbrace{a2}$ --> $\underbrace{a2}$ --> $\underbrace{a2}$ --> $\underbrace{a3}$ --> $\underbrace{a2}$ --> $\underbrace{a2}$ --> $\underbrace{a3}$ --> $\underbrace{a3}$ --> $\underbrace{a2}$ --> $\underbrace{a3}$ --> $\underbrace{a3$

Basic Instructions

For your reference, here are a couple of the basic instructions for arithmetic operations and dealing with memory:

Inst 1, 2, 3 inst 1, off()

Basic Operations:

	[inst]	[destination register] [argument register 1] [argument register 2]					
	add	Adds the two argument registers and stores in destination register					
	xor	Exclusive or's the two argument registers and stores in destination register					
	mul	Multiplies the two argument registers and stores in destination register					
	sll	Logical left shifts AR1 by AR2 and stores in DR					
	srl	Logical right shifts AR1 by AR2 and stores in DR					
	sra	Arithmetic right shifts AR1 by AR2 and stores in DR					
	slt/u	If AR1 < AR2, stores 1 in DR, otherwise stores 0, u does unsigned comparison					
	[inst]	[register] [offset]([register with base address])					
	sw	Stores the contents of the register to the address+offset in memory					
	lw	Takes the contents of address+offset in memory and stores in the register					
	[inst]	[argument register 1] [argument register 2] [label]					
	beq	If AR1 == AR2, moves to label					
	bne	If AR1 != AR2, moves to label					
	[inst]	[destination register] [label]	UB				
	jal	Stores the current instruction's address into DR and moves to label					
	You may	may also see that there is an "i" at the end of certain instructions, such as					
		, etc. This means that AR2 becomes an "immediate" or an integer instead	1 1 2 1	3			
	of using	a register.	1 1 2 1	']			
3.1	Assume	we have an array in memory that contains int* arr = $\{1,2,3,4,5,6,0\}$.	\ \ \ \ \ \ \ \ \	2			
3.2		values of arr be a multiple of 4 and stored in register so. What do the					
		of RISC-V code do? Assume that all the instructions are run one after the	ا للداد ١	:0+8 '			
	other in	the same context. $MFM(s0+12) \rightarrow t0$	5019				
	a) <u>lw</u>	the same context. to, $12(s0)$ > MEM $(s0+12) \rightarrow t0$					
		10107-24/(11-1140)					
		t1, t0, 2 t02(x - (t) = 4*(0)	<u> </u>	(
	_	t2, s0, t1 $50+f\rightarrow t2$ t3, $0(t2)$ $MEM(f2+0) \rightarrow t3$	0 1	2. 个 3			
	lw	$t3, \theta(t2)$ MEM($+2+0$) $\rightarrow t3$	or choj ,				
Λ-X		t3, t3, 1 t3, 0(t2) t3+1->t3 _{n1} (+2+0) ih(remen	tarrity 1	50+12			
0-7	SW	$\begin{array}{cccccccccccccccccccccccccccccccccccc$,			
1 ニ~ [×]	c) lw	to, o(so) OXFFF MEM (50+0) -> to 2 1 comp	·	_			
·	- xori	to, o(so) 0xFFF -> MEM (50+0) -> to 5 twos comp to, to, o= -> invert to bits } twos	1	1			
		to, to, 0 -> invert to bits } twos to, to, to, 1	\ (
3.2		aly using the instructions (and their "i" forms) given above, how can we	^	160			
		on the following conditions:	()\	700			
		$s0 < s1 \qquad \qquad s0 \ge s1 \qquad \qquad s0 > 1$	50	0.6160			
1 (10	cos (14 +0 50.5)	51	0+440			
5(+	せりノ	50,71	1- anc[0].	(1.1)			
,	11	$\frac{50 < s1}{50, 5 }$ $\frac{50 \ge s1}{5H}$ $\frac{50 \ge s1}{50, 50, 5 }$ $\frac{50 \ge s1}{5H}$ $\frac{50 \ge s1}{50, 50, 5 }$ $\frac{50 \ge s1}{50, 50, 5 }$	50 (o] ar [o] •	(-1)			
bne	Ն∪յ	bed a h					
		ı					

4 C to RISC-V

[4.1] Translate between the C and RISC-V verbatim

	C	RISC-V	
	// s0 -> a, s1 -> b // s2 -> c, s3 -> z int a = 4, b = 5, c = 6, z; z = a + b + c + 10;		
Ø.	// s0 -> int * p = intArr; // s1 -> a; *p = 0; int a = 2; p[1] = p[a] = a; P[A] = A	SW XO, 0(50) addi sl, XO, 2 SW sl, 4(50) SII; to, 51, 2 add to, 50, to 3 SW Sl, 0(to)	۶ بہ
	<pre>// s0 -> a, s1 -> b int a = 5, b = 10; if(a + a == b) { a = 0; } else { b = a - 1; }</pre>	addi s0, x0,5 addi s1, x0,10 add t0, s0,50 bne t0, s1, else add s0, x0,x0 jal x0, exit	
		Praddi \$0, x0, 0 addi \$1, x0, 1 addi \$1, x0, 30 loop: beq \$0, \$1, \$2, \$1 addi \$0, \$2, \$3 addi \$2, \$3, \$1 addi \$2, \$3, \$1 addi \$3, \$3, \$1 addi \$4, \$5, \$6, \$1 addi \$5, \$6, \$1 addi \$6, \$6, \$1 a	
	<pre>// s0 -> n, s1 -> sum // assume n > 0 to start for(int sum = 0; n > 0; n) { sum += n; }</pre>		

