	CS 61BL		Lab 16	
	Summer 2019		July 30, 2019	
	Name:	SI	D:	
	Please complete this worksheet du of your section. You are encourage			
	Section Number: 01 02 03	04 05 06 07 (08 09 10 11 12	
	1 Edge vs. Vertex Co	unts		
1.1	Suppose that G is a directed graph with N vertices. What's the maximum number of edges that G can have? Assume that a vertex cannot have an edge pointing to teself, and that for each vertex u and v , there is at most one edge (u, v) .			
	$\bigcirc N$	<u> </u>	5+4+3+2+1	1
	$\bigcirc N^2$	XA	I generalize to	5 N
	$ \begin{array}{c} N(N-1) \\ \bigcirc \frac{N(N-1)}{2} \end{array} $	() ()	5 + 4 + 3 + 2 + J generalize to U-1) + (N-2) +	$+1 = O(N^2)$ $+ N(N-1)$
1.2	Now suppose the same graph G in	the above question is an	undirected graph. Again	70(10-1)
	assume that no vertex is adjacent		e edge connects any pair	ر کے کے اور میں اور می
	of vertices. What's the maximum the directed graph of G ?	n number of edges that	G can have compared to	undirected every edge is Lawected edges
	half as many edges		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	directed adals
	the same number of edges	same log	ic proj	$\rightarrow \Lambda / (\Lambda - 1)$
	twice as many edges	500 12	Nr. 3C	-> 10 (10 1)
1.3	What's the minimum number of vertices can have?	edges that a connected t	undirected graph with N	
	N-1	(
	$\bigcirc N$	\circ	<i>,</i>	and to
	$\bigcirc N^2$	lla becom	nodes to c	When io
	$\bigcirc N(N-1)$) Mean mil	i intert	nodes
	$\bigcirc \frac{N(N-1)}{2}$	Some Thing,	NO ISUM	chlac
		- at least	nodes to c no isolated N-1 come	(1,404.2)

2 Trade Offs

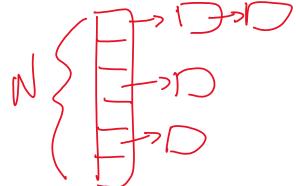
2.1 Space

1. Which is most space-efficient if you have a lot of edges in your graph?	4. Which is most time-efficient for adding an edge if you have very few edges in your graph?
• Adjacency matrix	Adjacency matrix
○ Adjacency lists	○ Adjacency lists
O It depends	O It depends
O They are the same	O They are the same
2. Which is most space-efficient if you have very few edges in your graph?	5. Which is most time-efficient for returning a list of edges from one node if you have very few edges in your graph?
○ Adjacency matrix	○ Adjacency matrix
Adjacency lists	Adjacency lists
O It depends	O It depends
O They are the same	O They are the same
3. Which is most time-efficient for adding an edge if you have a lot of edges in your graph?	6. Which is most time-efficient for returning a list of edges from one node if you have a lot of edges in your graph?
Adjacency matrix	Adjacency matrix
○ Adjacency lists	• Adjacency lists
○ It depends	O It depends
O They are the same	O They are the same

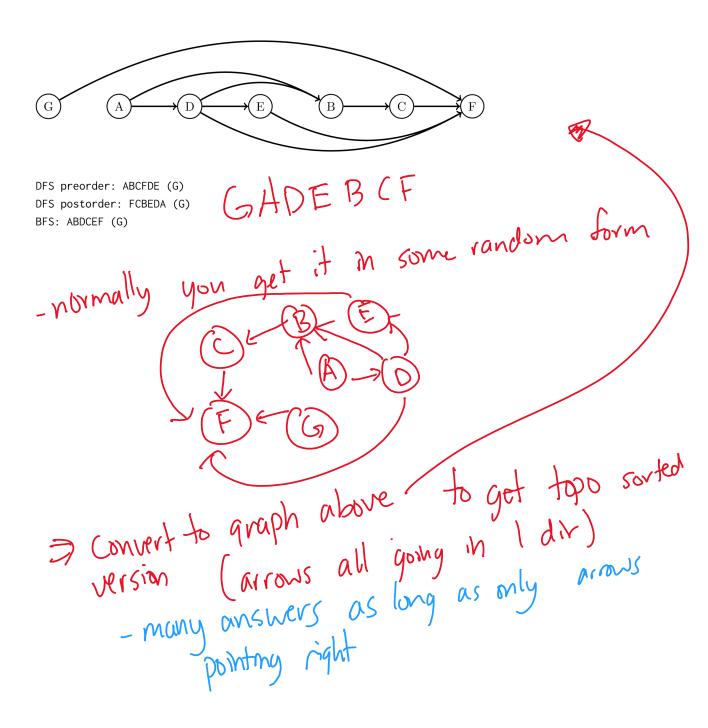
2.2 Runtime

- 1. Using an adjacency matrix, how long in the worst case does it take to determine if vertex v is adjacent to vertex w? (Assume vertices are represented by integers.)
 - constant time
 - O time proportional to the number of neighbors of vertex v
 - O time proportional to the number of vertices in the graph
 - O time proportional to the number of edges in the graph
- 2. Using an array of adjacency lists, how long in the worst case does it take to determine if vertex v is adjacent to vertex w? (Assume vertices are represented by integers.)
 - O constant time
 - (a) time proportional to the number of neighbors of vertex v
 - time proportional to the number of vertices in the graph
 - time proportional to the number of edges in the graph

3 Memory Use


3.1 Suppose we are representing a graph with N vertices and E edges. There are N^2 booleans stored in an adjacency matrix, so the memory required to store an adjacency matrix is N^2 times the memory required to store a boolean value. Assume that references and integers each use 1 unit of memory. The amount of memory required to represent the graph as an array of adjacency lists is proportional to what?

 $\bigcirc E^2$


N + E

 \bigcirc E

4 Topological Sorting

4.1 Give a valid topological sort of the graph below. For your reference, some orderings of the graph are provided below the graph.

