S o afndone
s

Section 8: Introduction to I/O; Queuing Theory, and RPC

(CS162
July 17, 2019

Contents

1 Warm Up 2
1.1 Short Questions e 2

2 Vocabulary 3

3 Problems 4
3.1 Disabling Interrupts 4
3.2 Disks . . . oL 4
3.3 Queuing Theory e 5
3.4 Tying it all together e 6
3.5 RPC . . o 7

CS 162 Summer 2019 Section 8: Introduction to I/O, Queuing Theory, and RPC

1 Warm Up

1.1 Short Questions

TrueYFalse) If a particular IO device implements a blocking interface, then you will need multiple
threads to have concurrent operations which use that device.

bleck = ho nuve reqsTs

2. (True For 1O devices which receive new data very frequently, it is more efficient to interrupt
the CPU than to have the CPU poll the device.

P“”"‘j Vs lSs over R0 gt

3. (True/Kalse))With SSDs, writing data is straightforward and fast, whereas reading data is complex
and slow.

W 7 e Slow , reads fest

4. (True /é alse)User applications have to deal with the notion of file blocks, whereas operating systems

deal with the finer grained notion of disk sectors.
i)E N OF‘-,Q{ URvs”

5. What is a block device? What is a character device? Why might one interface be more appropriate
than the other?

L [oFs of deFa of e, dranils o~ calledt bk
/7]y\d\/‘dual gyﬂs ot ”‘7L

X Shaam of Hun,

6. Why might you choose to use DMA_instead of memory mapped I/O? Give a specific example
where one is more appropriate than the other?
0 Ceun

MM‘IO S (PD 4 1o mked | spd i memay
E\lﬂ_\k v EXplﬂhat I;t';ljant by “tOP half d “bottomp half” jirf the con)ext of device drivers.
| w

,_(__:/

%
\ L—

CS 162 Summer 2019 Section 8: Introduction to I/O, Queuing Theory, and RPC

2

7
7
L

Vocabulary

I/0O In the context of operating systems, input/output (I/O) consists of the processes by which
the operating system receives and transmits data to connected devices.

Controller The operating system performs the actual I/O operations by communicating with
a device controller, which contains addressable memory and registers for communicating the the
CPU, and an interface for communicating with the underlying hardware. Communication may be
done via programmed I/0, transferring data through registers, or Direct Memory Access, which
allows the controller to write directly to memory.

Interrupt One method of notifying the operating system of a pending I/O operation is to send a
interrupt, causing an interrupt handler for that event to be run. This requires a lot of overhead,
but is suitable for handling sporadic, infrequent events.

Polling Another method of notifying the operating system of a pending I/O operating is simply
to have the operating system check regularly if there are any input events. This requires less
overhead, and is suitable for regular events, such as mouse input.

Response Time Response time measures the time between a requested I/O operating and its
completion, and is an important metric for determining the performance of an I/O device.

Throughput Another important metric is throughput, which measures the rate at which opera-
tions are performed over time.

Asynchronous I/0 For synchronous 1/O operations, we can have the requesting process sleep
until the operation is complete. On the other hand, asynchronous I/O operations have the re-
questing process return immediately and continue execution and later notify the process when the
operation is complete.

Memory-Mapped File A memory-mapped file is a segment of virtual memory which has been
assigned a direct byte-for-byte correlation with some portion of a file or file-like resource. This
resource is typically a file that is physically present on-disk, but can also be a device, shared memory
object, or other resource that the operating system can reference through a file descriptor. Once
present, this correlation between the file and the memory space permits applications to treat the
mapped portion as if it were primary memory.

Memory-Mapped I/O Memory-mapped I/O (not to be confused with memory-mapped file I/0O)
uses the same address bus to address both memory and I/O devices the memory and registers of
the I/O devices are mapped to (associated with) address values. So when an address is accessed
by the CPU, it may refer to a portion of physical RAM, but it can also refer to memory of the
I/O device. Thus, the CPU instructions used to access the memory can also be used for accessing
devices.

Queuing Theory Here are some useful symbols: (both the symbols used in lecture and in the
book are listed)

— u is the average service rate (jobs per second)

CS 162 Summer 2019 Section 8: Introduction to I/O, Queuing Theory, and RPC

3

— Tyer or S is the average service time, so Tse, = ﬁ

A is the average arrival rate (jobs per second)

U or u or p is the utilization (fraction from 0 to 1), so U = % =S

— T, or W is the average queuing time (aka waiting time) which is how much time a task needs
to wait before getting serviced (it does not include the time needed to actually perform the
task)

— Tsys or R is the response time, and it’s equal to Ty + Tse or W + S
— L, or @ is the average length of the queue, and it’s equal to AT, (this is Little’s law)

e RPC - Remote procedure calls (RPCs) are simply cross-machine procedure calls. These are usually

implemented through the use of stubs on the client that abstract away the details of the call. From
the client, calling an RPC is no different from calling any other procedure. The stub handles the
details behind marshalling the arguments to send over the network, and interpreting the response
of the server.

IDL - Interface definition languages (IDLs) are specification languages used to describe a software
component’s API. They describe an interface in a language-independent way, enabling communi-
cation between software components that do not share one language. IDLs are commonly used in
RPC where the two endpoints of an RPC communication may be using different operating sys-
tems or languages. Protocols specified in an IDL can be compiled into varoius source languages,
genearating client and server stubs that handle marshalling/unmarshalling of arguments and code.

Problems

3.1 Disabling Interrupts

We looked at disabling CPU interrupts as a simple way to create a critical section in the kernel. Name
a drawback of this approach when it comes to I/O devices.

Q%Pg Yyow P rt(ehﬁlh7 rlulpavfl”“/" ;h%tru//j

3.2 Disks \(@ [—%Ci‘\

What are the major components of disk latency? Explain each on

Quehy (e
Conlr

' Seel\C
yotuhv

- ‘\Yamé[bf

In class we said that the operating system deals with bad or corrupted sectors. Some disk controllers
magically hide failing sectors and re-map to back-up locations on disk when a sector fails.
If you had to choose where to lay out these back-up sectors on disk - where would you put them? Why?

A~ D

R

=,
* X w ¥
CS 162 Summer 2019

How do you think that the disk controller can check whether a sector has gone bad?

C < /716/ (_l/\ld[émm

Can you think of any drawbacks of hiding errors like this from the operating system?

Wides oizg faclun

3.3 Queuing Theory

Explain intuitively why response time is nonlinear with utilization. Draw a plot of utilization (x axis)
vs response time (y axis) and label the endpoints on the x axis.

If 50 jobs arrive at a system every second and the average response time for any particular job is
100ms, how many jobs are in the system (either queued or being serviced) on average at a particular
moment? Which law describes this relationship?

Is it better to have N queues, each of which is serviced at the rate of 1 job per second, or 1 queue
that is serviced at the rate of N jobs per second? Give reasons to justify your answer.

What is the average queueing time for a work queue with 1 server, average arrival rate of A\, average
service time S, and squared coefficient of variation of service time C?

CS 162 Summer 2019 Section 8: Introduction to I/O, Queuing Theory, and RPC

What does it mean if C = 0?7 What does it mean if C =17

3.4 Tying it all together
Assume that you have a disk with the following parameters:
e 1TB in size
e G0OORPM
e Data transfer rate of AMB/s (4 x 10° bytes/sec) S

U 66083, %000/000

e Average seek time of 3ms

e 1/0 controller with 1ms of controller delay

e Block size of 4000 bytes - [ms
Pt i

What is the average rotational delay?
O §Im 'S
— " = ms
2. 6060 rpm

What is the average time it takes to read 1 random block? Assume no queuing delay.

P é.teL V‘o"'——;]:"/\ ""W"M("/
C(WATIL+ 2 5 ¢+ | = [bims

Will the actual measured average time to read a block from disk (excluding queuing delay) tend to
be lower, equal, or higher than this? Why?

[(S\NU Ao ’}'D C)f)ﬂ&, G)Q'}"YMI-%NA

Assume that the average I/O operations per second demanded is 50 IOPS. Assume a squared coeffi-
cient of variation of C = 1.5. What is the average queuing time and the average queue length?

CS 162 Summer 2019 Section 8: Introduction to I/O, Queuing Theory, and RPC

3.5 RPC

As mentioned in lecture, RPC provides inter-process communication and location transparency, meaning
that processes can be local to the same machine or be between two different machines. Thus, the RPC
code used by the client remains the same no matter how the client and server are separated. In this
problem, we’ll explore the usage of an actual RPC system called gRPC complemented by an IDL called
Protocol Buffers. We will implement a basic key-value storage in Python with RPC.

We first start by filing out the necessary code in our keyvaluestore.proto file. The two most im-
portant concepts are messages and services. Think of messages as a data structure that a client wants
to send to a server for it to call a function on. Services are essentially functions in the RPC system that
operate on the defined message types. Certain service and message types have already been filled out
for you. Your task is to fill out the blanked out service and message types (based on the syntax of the
lines that are already filled out):

keyvaluestore.proto:

syntax = "proto3";

// A simple key-value storage service
service KeyValueStore {
// Provides a value for a key request
rpc GetValue (GetRequest) returns (Response) {}

// Stores a value for a key-value request. Assume service is called StoreValue

// The request message containing the key
message GetRequest {

// The request message containing the key and value
message StoreRequest {

string key = 1;

string value = 2;

¥

// The response message containing the value associated with the key

CS 162 Summer 2019 Section 8: Introduction to I/O, Queuing Theory, and RPC

message Response {

We can now compile the . proto file we wrote by calling python -m grpc_tools.protoc -I. --python_out=.
--grpc_python_out=. ./keyvaluestore.proto. This will generate two files: keyvaluestore_pb2.py
and keyvaluestore_pb2_grpc and contain:

e classes for the messages defined in keyvaluestore.proto
e classes for the service defined in keyvaluestore.proto

— KeyValueStoreStub, which can be used by clients to invoke KeyValueStore RPCs

— KeyValueStoreServicer, which defines the interface for implementations of the KeyValue-
Store service

e a function for the service defined in keyvaluestore.proto
— add_KeyValueStoreServicer_to_server, which adds a RouteGuideServicer to a grpc.Server

Now that we have the necessary compiled stub code, let’s create a KeyValueStore server by first imple-
menting the servicer interface generated from our service definitions. This servicer class must implement
all the KeyValueStore service methods defined in the keyvaluestore.proto file. Please fill out all the
following code in keyvaluestore_server.py:

class KeyValueStoreServicer(keyvaluestore_pb2_grpc.KeyValueStoreServicer):
"""Provides methods that implement functionality of key value store server. """
def __init__(self):

if

return keyvaluestore_pb2.Response(value="Error: %s does not exist." J request.key)

def StoreValue(self, request, context):

We next define a serve() function (which will be run by the server) that does the following:
e Create a gRPC server.
e Create a KeyValueStoreServicer() instance and add it to the gRPC server
e Set up the gRPC server to listen and accept requests at localhost:50051.
e Start up the server
For those who are curious, it looks something like:

def serve():
server = grpc.server (futures.ThreadPoolExecutor (max_workers=10))
keyvaluestore_pb2_grpc.add_KeyValueStoreServicer_to_server(KeyValueStoreServicer(), server)
server.add_insecure_port(’[::]:50051”)
server.start()

CS 162 Summer 2019 Section 8: Introduction to I/O, Queuing Theory, and RPC

Next, let’s create the client by implementing the basic functions of a key-value store: storing a key-value
pair and retrieving the value of a key. Client functions operate on its typical arguments and a stub, which
is bound to a specific hostname and port. Fill out the following code in keyvaluestore_client.py:

def store_value(stub, key, val):

def get_value(stub, key):
response = stub.GetValue(keyvaluestore_pb2.GetRequest (key=key))
print("Stored %s" 7 (response.value))

We can then define a run() function that stores key-value pairs into the server and retrieves values
from the server for a particular key.

def run():
with grpc.insecure_channel(’localhost:50051’) as channel:
stub = keyvaluestore_pb2_grpc.KeyValueStoreStub(channel)

print("---—-——-———-——-- StoreValue———--—--—————————- ")
store_value(stub, "project2 design doc", "due tonight")
print("---—-——-———————- GetValue-—-————————————- ")
get_value(stub, "project2 design doc")
print("---———--——---——- Test non-existent key-—--—--—---—--—- "y

get_value(stub, "my grade")

As mentioned earlier, notice that the client connects to a certain server to generate its stub. In this
example, the client and server are running on the same machine. However, the server can run on a
machine on the other side of the world and the same code that’s shown here will still function properly
as long as we are able to determine the server’s hostname and port. This is the beauty of RPC’s location
transparency.

