Section 7

Wednesday, July 17,2019 2:05 PM :) ()‘V) VV] M V\ a‘i‘a) VV\'Q Of \H’CV’ O(OV{ C»(L

Section 7: Wait 4+ Exit in PintOS, Calling Conventions, Midterm
Review

CS162
July 17, 2019

Contents

1 Wait and Exit 2
1.1 Thinking about what youneedtodo 00 2
1.2 Code . . o oo 2

2 Calling Conventions and Argument Passing 3
2.1 Calling Conventions 3

3 Midterm Review 4
3.1 Signalsand Forks L 4
3.2 Spring 2017, MTL P5 o e 5
3.3 Fall 2017, MT1 P2 7

CS 162 Summer 2019 Section 7: Wait + Exit in PintOS, Calling Conventions, Midterm Review

1 Wait and Exit

This problem is designed to help you with implementing wait and exit in your project. Recall that wait
suspends execution of the parent process until the child process specified by the parameter id exits, upon
which it returns the exit code of the child process. In Pintos, there is a 1:1 mapping between processes
and threads.

1.1 Thinking about what you need to do

”wait” requires communication between a process and its children, usually implemented through shared
data. The shared data might be added to struct thread, but many solutions separate it into a separate
structure. At least the following must be shared between a parent and each of its children:

- Child’s exit status, so that "wait” can return it.

- Child’s thread id, for ”wait” to compare against its argument.

- A way for the parent to block until the child dies (usually a semaphore).

- A way for the parent and child to tell whether the other is already dead, in a race-free fashion (to
ensure that their shared data can be freed).

1.2 Code

Data structures to add to thread.h for waiting logic: /

P

7

deud- o ¥
Irsd-—e leim lodc G el (o

Implement Wdlt
r NP PN

—_ C[/\Q,QC— ll7>T 7 w’S'/ ==Ccutio-tte
(}owV\ Sema re
. geb exit 0v

é‘l‘fmd- n

— T eTWnN exﬂ cov

hnplement exit:

~onf edF &I Mo PR WS
dC, YEF' Covu/nl‘
,-ﬁ 6} VQGS =) 'QQQ

et COOL"- lE‘} 01‘?
Lid

chi

elée

Stmo - AP
chtld“m

‘R’\(ﬁc[ws; rof _ comt

1F O refs = firee

q 'Pﬁsg-]b& Qxec t;}‘m\/\

ent
¥ Calls -

\/\)a«*‘ o
I

purent? P”""’L Fees

Confre when wwf el

ok up

chncd wal Shites S il T C
wa P}W'(' ?,M cow"{- =9 ‘Hreo\d:j K

cent]

[Denes 4 vos ot

rQVd— '&’Q@S d/:a/e

oNn Xy C]/\l\ rees &
e\u“'

CS 162 Summer 2019 Section 7: Wait + Exit in PintOS, Calling Conventions, Midterm Review

2 Calling Conventions and Argument Passing

2.1 Calling Conventions
Sketch the stack frame of helper before it returns.

void helper(char* str, int len) {
char word[len];

strncpy (word, str, len);

printf ("%s", word);

return;

}

int main(int argc, char *argv[]) {
charx str = "Hello World!";
helper(str, 13);

}

CS 162 Summer 2019 Section 7: Wait + Exit in PintOS, Calling Conventions, Midterm Review

3 Midterm Review
3.1 Signals and Forks

Given the following code, write out all possible outputs.

pid_t pid; int counter = 3;

void rem(int signum) {
counter *= 5;
printf ("counter: %d\n", counter);
kill(pid, SIGUSR1);

}

void emilia(int signum) {
counter += 5;
printf("counter: %d\n", counter);
exit(0);

int main() {

pid_t p; int status;

signal (SIGUSR1, rem);

if ((pid = fork()) == 0) {
signal (SIGUSR1, emilia);
kill(getppid(), STGUSR1);
while(1);

}

counter = 1000;

printf ("counter: %d\n", counter);

CS 162 Summer 2019 Section 7: Wait + Exit in PintOS, Calling Conventions, Midterm Review

3.2 Spring 2017, MT1 P5

Next Saturday is the international day of Poker. As the owner of the largest poker website worldwide
you expect a large number of games being played (and finishing) at any point in time in your website.
Consider that players can play more than one game at a time and any two players can play against each
other in more than one game simultaneously. For simplicity, we consider each game has exactly two
players. The backend system of your poker website contains the following multi-threaded code:

queue games_finished_queue;
lock_t games_finished_lock;
semaphore games_to_process_sem;

typedef struct Game {
} Game;
typedef struct Player {

lock_t lock; D
uint64_t n_chips; gen/la
uint64_t unique_id;

} Player;

void finish_game(Game *game) {
lock_acquire (&games_finished_lock);
enqueue (&games_finished_queue, game);
lock_release (&games_finished_lock);
sema_up (&games_to_process_sem) ;

void process_finished_games() {
lock_acquire (&games_finished_lock);
sema_down (&games_to_process_sem) ;
Game *g = pop_queue_front(&games_finished_queue);
move_chips(g->playerl, g->player2, g->n_chips);
lock_release (&games_finished_lock);

void move_chips(Player *playerl, Player *player2, uint64_t n_chips) { ,I g
lock_acquire (&playerl->lock) ; p N -) (]\‘-’ D
lock_acquire (&player2->lock) ; "C‘ l ? U—T ‘ C 7M
playerl->n_chips -= n_chips; l
player2->n_chips += n_chips; &
lock_release (&player2->lock) ; [
lock_release (&playeri->lock) ; e x
}

(a) Identify two places in the code where deadlock can occur. If deadlock occurs, use no more than two
sentences to explain why it occurs.

ot

CS 162 Summer 2019 Section 7: Wait + Exit in PintOS, Calling Conventions, Midterm Review

(b) Use the space bellow to change process_finished games() and move_chips() (or copy if correct)
to ensure no deadlocks can occur. Explain succinctly why no deadlock can occur with the newly
modified code. Note: a single lock at the beginning and end of move_chips is not an accepted
solution.

void process_finished_games() {

Game* g = pop_queue_front (&games_finished_queue);
move_chips(g->playerl, g->player2, g->n_chips);

}

void move_chips(Player* playerl, Player* player2, uint64_t n_chips) {

playerl->n_chips -= n_chips;
player2->n_chips += n_chips;

CS 162 Summer 2019 Section 7: Wait + Exit in PintOS, Calling Conventions, Midterm Review

3.3 Fall 2017, MT1 P2
Consider the following C program. Assume that all system calls succeed when possible.

void *rem(void *args) {
printf("Blue: %d\n", *((int *) args));
exit(0);

}

void *ram(void *args) {
printf ("Pink: %d\n", ((int *) args)[0]);
return NULL;

}

int main(void) { D C(

pid_t pid; pthread_t pthread; int status; //declaring vars

int fd = open("emilia.txt", O_CREAT|O_TRUNC|O_WRONLY, 0666) ;
int *subaru = (int *) calloc(l, sizeof(int)); gf—‘%?‘
printf("Original: %d\n", *subaru); \

if (pid = fork()) {
*subaru = 1337;

pid = fork(); C/l

}

if (1pid) { S= 1333
pthread_create (&pthread, NULL, ram, (void*) subaru);

} else { \dt”o

for (int i = 0; i < 2; i++)
waitpid(-1, &status, 0);
pthread_create (&pthread, NULL, rem, (void*) subaru);
}
pthread_join(pthread, NULL);

if (*subaru == 1337)
dup2(fd, fileno(stdout));

printf ("All done!\n");

return O;

}

(a) Including the original process, how many processes are created? Including the original thread, how
many threads are created?

2P, LT

(b) Provide all possible outputs in standard output.

> kD All das

CS 162 Summer 2019 Section 7: Wait + Exit in PintOS, Calling Conventions, Midterm Review

O 0«»77 0

~
C;) ;/’,\(1 ll’\D\) O
21237 Pwmlc: O
PMV_ ' T'?;\,\[C‘.\Z-‘ZJ P/.;f /‘{(éwf&-?

e R

-
S—"

(¢) Provide all possible contents of emilia.txt.
LY 3
All dore -

Suppose we deleted line 28 (if *subaru == 1337), how would the contents of emilia.txt change
(if they do)?

(d

=

(e) What if, in addition to doing the change in part (d), we also move line 12 (where we open the file
descriptor) between lines 19 and 20 (exactly after the first if statement)? What would emilia.txt
look like then?

