Section 6 Notes

Section 6: Basic Networking and Socket Programming

CS162
July 15, 2019

Contents
1 Vocabulary
2 Warmup

3 Problem
3.1 Designing the Internet L
3.2 Socket Programming: Implementing an Echo Server

CS 162 Summer 2019 Section 6: Basic Networking and Socket Programming

1 Vocabulary

TCP - Transmission Control Protocol (TCP) is a common L4 (transport layer) protocol that
guarantees reliable in-order delivery. In-order delivery is accomplished through the use of sequence
numbers attached to every data packet, and reliable delivery is accomplished through the use of
ACKs (acknowledgements).

Flow Control - Flow control is the process of managing the rate of data transmission such that
a fast sender doesn’t overwhelm a slow receiver. In TCP, flow control is accomplished through the
use of a sliding window, where the receiver tells the sender how much space it has left in its receive
buffer so that the sender doesn’t send too much.

RPC - Remote procedure calls (RPCs) are simply cross-machine procedure calls. These are usually
implemented through the use of stubs on the client that abstract away the details of the call. From
the client, calling an RPC is no different from calling any other procedure. The stub handles the
details behind marshalling the arguments to send over the network, and interpreting the response
of the server.

socket - Sockets are an abstraction of a bidirectional network I/O queue. It embodies one side of a
communication channel, meaning that two must be required for a communication channel to form.
The two ends of the communication channel may be local to the same machine, or they may span
across different machines through the Internet. Most functions that operate on file descriptors like
read() or write() work on sockets. but certain operations like lseek() do not.

CS 162 Summer 2019 Section 6: Basic Networking and Socket Programming

2 Warmup

a) (True@PvéL can support up to 264 different hosts.
39\-)DJS 1‘39 L P
b) (True/ Port numbers are in the IP packet.
e 'l
Wansper Loy~
7 7

c¢) (True/false) UDP has a built in abstraction for sending packets in an in order fashion.

—

[onty TCP ODP whorda e =

d) (alse) TCP is built in order to provide a reliable and ordered byte stream abstraction to

networking.

e) QTruejFalse) TCP attempts to solve the congestion control problem by adjusting the sending window
N packets are dropped.

f) In TCP, how do we achieve logically ordered packets despite the out of order delivery of the physical
reality? What field of the TCP packet is used for this? (L~

Seq md

¢) Describe how a client opens a TCP connection with the server. Elaborate on how the sequence
number is initially chosen.

Ly ndSha izt (,'er:wn D LAkt

_s_i)mk

xXrL,Y
f
oct 5 \9 ¥+
h) Describe the semantics of the acknowledgement field and also the window field in a TCP ack.

b\)\\/\d(},\] P 1/)01/\/ VV\(Ad’\ M€ ;'i’i? HW;}) Y),CC\CVQ.I
uccnonlelgement how Mubr T s recerened

CS

162 Summer 2019 Section 6: Basic Networking and Socket Programming

3

Problem

3.1 Designing the Internet

In class we learned about two fundamental concepts on internet architecture: layering, fate sharing, and

the

end to end principle.

a) List the 5 layers specified in the TCP/IP model. Layering adds modularity to the internet and allows
innovation to happen at all layers largely in parallel. What is the function of each layer?

y

N\

Ph% cal = Yow o MV\SF)‘T

I wdmv\
g DaJ'MM}/' Paslcgj\l i[i&@ ok pecke ek

3, Nehrle - gloasl Aelv :ow(yy‘;;’”lc P

_ oo~ wWad

Spen

"))jlfa’hﬂ« — QMP}%‘A' 1y "‘P)X

b)

un\ ah’V""/
4. T‘(U“QM - tQ\tWﬁ' J);V\LU' ;6«6%(‘«7 sheum, | TCP) PP

When the internet was very young, there was an intense debate between packet switching and circuit
S 7 04

switching. Define the two concepts, and disguss the pros and cons of eas
A

w / 9'_ W,\Ayua/Q
CVew guitdhing — veswe Lundeddis

The fate sharing principle dictates where data should be stored in the internet. In the words of David
Clark: The fate-sharing model suggests that it is acceptable to lose the state information associated
with an entity if, at the same time, the entity itself is lost. The idea begin fate sharing is that in a
distributed system, state should be colocated with the entities that rely on that state. That way the
only way to suffer a critical loss of state is if the entity that cares about it also fails, in which case
it doesn’t matter. What does the fate sharing principle say about the argument of packet switching

verses circuit sw1tch1ng7 C,,. % -Ir, A L\(\s ‘)Lt
J A\S A j

f sk = qWw o R
P(}.(,\CQ{’ éw\’rd/lﬂ’\? 5 Jots thrs

5o iF hosks yo dovwr, G

\Je [SUsS (‘,\\(C\A‘}' l/m galc M {[,\.HLal/\eS' J-VDV‘#“

secoadt

CS 162 Summer 2019 Section 6: Basic Networking and Socket Programming

d) The end to end principle is one of the most famed design principles in all of engineering. It argues
that functionality should only be placed in the network if certain conditions are met. Otherwise,
they should be implemented in the end hosts. These conditions are:

— Only If Sufficient: Don’t implement a function at the lower levels of the system unless it can be
completely implemented at this level.

— Only If Necessary: Don’t implement anything in the network that can be implemented correctly
by the hosts.

— Only If Useful: If hosts can implement functionality correctly, implement it in a lower layer only
as a performance enhancement.

Take for example the concept of reliability: making all efforts to ensure that a packet sent is not
lost or corrupted and is indeed received by the other end. Using each of the three criteria, argue if
reliability should be implemented in the network.

i) Only If Sufficient ‘ (L L .’- ” A
el Can and elew , 7wl 7%

N, N,ilr wot - receivtd: \

—sehh vser rieed> b t\MFIlWh/’ st il

Only If Necessary

No. Can do }:"Hj h NKE

)

iy

—
=
=

iii) Only If Useful

e ol sons: Geral ea
m;?ﬁ;w:l f,m}f;,wg conld e
(/Jof .

e) An important concept of router design is the separation of the data plane and the control plane. The
control plane is like the brains of routing: it makes decisions of where to forward the packets. In
constructs a routing table, which is a mapping of packet metadata (usually just the destination IP
but sometimes may include source IP, flow ID, etc) to an outgoing port. The data plane takes the
routing table, and is responsible for the actual action of looking up a packet and finding its chosen
outbound port.

Traditionally, both the control plane and the data plane reside on the routers themselves and each
router works in a distributed fashion to calculate their individual routing tables. Recently, there
has been a movement to detach the control plane from the routers and instead have one or a set of
centralized controllers that act as the control plane for all routers. What may be the pros and cons

of doing this? \SVN QOHTJM et r\Ch»/W‘th

CS 162 Summer 2019 Section 6: Basic Networking and Socket Programming

L dukd ool - anfleyble 3 Wb b vpdﬂk

N cnhalives embrol L
oV a—wc,mwus Ghot seculiY, CCaldo'//A;.

3.2 Socket Programming: Implementing an Echo Server

Alice wants to implement a simple echo server: whenever the client send input to the server, the server
simply sends the same input back the client. To do this, Alice writes client-specific code and server-
specific code using sockets. However, Alice hasn’t been to lecture lately and needs your help to fill out
the following code snippets. Assume that the server IP address is servIP, server port is servPort, that

messages are 256 bytes or shorter, and that all calls to read and write succeed.

Fill out the client code

int main() {
char *msg = "I should have went to lecture";

if (sockfd == -1) {
perror("Failed to create a new socket.\n");
exit(1);

}

struct sockaddr_in server_address;

server_address.sin_port = _|

server_address.sin_addr.s_addr = 1net addr(_____ 5 g_V_V_I_E _________________);

if (status ==
perror("Falled to establish connection.\n");
exit(1);

}

char server_response[256];

N Sl 159, mEg- e)

/* Recelve_’riltsage fg rver h/-’ Y‘Q_S.P(N\SCJ 15—@ .’)

printf ("Server respqonded with: %s\n", server_response);
close(____S.QQ[‘.".’@éI___ ;

(e 8 ek [AE TNET, SOCK STREMM,C

/* Specify an address port for the socket */ !:!‘}\)MS

3

e R sk, Lsuney 0ddSs, sk [

)

&MJU'}' k

{
N Vosk ¢ KL peht
memset (&server_address, O, 31zeof (serv dflress))
server_address.sin_family l{\j é&j Z: __FQ ___________________________ /

v aolhs)

CS 162 Summer 2019 Section 6: Basic Networking and Socket Programming

Fill out the server code

int main() {

[r Create 2 skt lpl (BE_INET, SOUC_STREAMO)

if (sockfd == -1) {
perror("Failed to create a new socket.\n");
exit(1);

}

/* Specify an address and port for the socket */
struct sockaddr_in server_address;

memset (&server_address, 0, sizeo erv r aidress)) d
server_address.sin_family = _ v __, 5 V\;‘ l/lu
server_address.sin_port = ____WITONS S(_& ?) H

server_address.sin_addr.s_addr = ______ AY DJZ,_,AA_DC _________ £ 1o bih.d SOLM}’

?2?66' Y
/* Assign addres port to the sockgt */ + .
int status = foﬁ _56C, _z;}_ Senvey. ao'3&5§) S'H'CJ: (Se/\ef_ ; TP
if (status == -1) { no(dms) s
perror("Failed to assign address and port to socket\n"); /
P‘; new

exit(1);

} ‘/Vv\(jt '\[S 50(/@%'

/* Listen for new tions *
- e .S
:E:atzlsliatus == :11')- (& /& n ‘F 9[/%—[/*«

perror("Failed to listen for new connections\n"
X

char client_msg[256];
int num_read;

/* Serve forever
while (1) {
/* Accept new client cgnnecti *(k_@‘ NULL NULL>
int client_socket = _(_ﬁd' sb(l
if (client_socket < O) {
perror("Failed to accept new client connection"\n);
continue;

}

R SRE Sl T it okt _olrenb_msq , 156)
ffﬁ?ﬁjﬂfﬁiﬁi?&w& Chitwbmsg, pum. Had)
close(__c_llf_ni;{:(gcbﬂ{

