Section 5

Wednesday, July 10, 2019 2:05 PM

Section 5: 1/O and Deadlock

(CS162
July 10, 2019

Contents

1 Vocabulary

2 Problems
2.1 Files . . . o e
2.1.1 Files vs File Descriptor
2.1.2 Quick practice with write and seek Lo oL oL
2.2 Dupand Dup2
221 Warmup o oo e e
2.2.2 Redirection: executing a process after dup2
2.2.3 Redirecting in a new process
2.3 Banker's Algorithm oo oo

CS 162 Summer 2019 Section 5: I/0O and Deadlock

1 Vocabulary

e file descriptors - File descriptors are an index into a file-descriptor table stored by the kernel.
The kernel creates a file-descriptor in response to an open call and associates the file-descriptor
with some abstraction of an underlying file-like object; be that an actual hardware device, or a
file-system or something else entirely. Using file descriptors, a process’s read or write calls are
routed to the correct place by the kernel. When your program starts you have 3 file descriptors.

File Descriptor File

0 stdin
1 stdout
2 stderr
—_ 200
e int open(const char *path, int flags) - open is a system call that is usec{l%? open a new file
and obtain its file descriptor. Initially the offset is 0. e —

e size_t read(int fd, void *buf, size_t count) - read is a system call used to read count bytes
of data into a buffer starting from the file offset. The file offset is incremented by the number of
bytes read.

e size_t write(int fd, const void *buf, size_t count) - write is a system call that is used to write
up to count bytes of data from a buffer to the file offset position. The file offset is incremented by
the number of bytes written.

e size_t Iseek(int fd, off_t offset, int whence) - lseek is a system call that allows you to move
— SEEK_SET - The offset is set to offset.

— SEEK_END - The offset is set to the size of the file + offset
—— —
e int dup(int oldfd) - creates an alias for the provided file descriptor and returns the new fd value.

dup always uses the smallest available file descriptor. Thus, if we called dup first thing in our
program, it would use file descriptor 3 (0, 1, and 2 are already signed to stdin, stdout, stderr). The
old and new file descriptors refer to the same open file description and may be used interchangeably.

e int dup2(int oldfd, int newfd) - dup2 is a system call similar to dup. It duplicates the oldfd
file descriptor, this time using newfd instead of the lowest available number. If newfd was open,
it closed before being reused. This becomes very useful when attempting to redirect output, as
it automatically takes care of closing the file descriptor, performing the redirection in one elegant
command. For example, if you wanted to redirect standard output to a file, then you would call
dup2, providing the open file descriptor for the file as the first input and 1 (standard output) as
the second.

e Deadlock - Situation in which two computer programs sharing the same resource are effectively
preventing each other from accessing the resource, resulting in both programs ceasing to function.

_ﬁ’ Banker’s Algorithm - A resource allocation and deadlock avoidance algorithm that tests for
safety by simulating the allocation for predetermined maximum possible amounts of all resources,
before deciding whether allocation should be allowed to continue.

1) e ol 1%

o| 7~ o
R]

£ huble

O

|
L

[0
(«

==

Po Y
the offset of a file. There are three options for whence '

w
— SEEK_CUR - The offset is set to current_offset + offset ,—_—-\'

37‘0“{4
SfAon t

__j Fl4d

1\,

L

AL B, [0 @) fehb
0

{

CS 162 Summer 2019 Section 5: I/0 and Deadlock

2 Problems o J
el

2.1 Files \\ 4 ’j
2.1.1 Files vs File Descriptor e H
et 15

What’s the difference between fopen and open?
FIwe ¥
—ses open To spen Bl buk wer ohly cees FZIE X

7

2.1.2 Quick practice with write and seek

What will the test.txt file look like after I run this program? (Hint: if you write at an offset past the

end of file, the bytes inbetween the end of the and the offset will be set to 0.)
w

memset (buffer, ’a’, 200); o

int fd = open("test.txt", O_CREAT|O_RDWR);

— lseek(fd, 0, SEEK_SET);
. read(fd, buffer, 100); A
‘ lseek(fd, 500, SEEK_CUR);

write(fd, buffer, 200);

="

write(fd, buffer, 100);¢

Ghon 0080, Cw-622 02 Lo 200 -S7

2.2 Dup and Dup2
2.2.1 Warmup

What does C print in the following code? l o
int main(int argc, char **argv) 1
{ e
int pid, status; [O
int newfd;

if ((newfd = open("output_file.txt", O_CREAT|O_TRUNC|O_W
——
exit(1);

?

; Ow{?u«"—‘q < '7‘\# OVL{_PW’\X

printf ("The last digit of pi is.=NW;

dup2(newfd, 1); "rl,w/lﬂ-;"_\’?/}-i-

printf("five\n"); 4? AN
STEOT— e NP

56Ve >} d\‘/\P (\)

CS 162 Summer 2019 Section 5: I/0O and Deadlock

2.2.2 Redirection: executing a process after dup2

Describe what happens, and what the output will be.

int
main(int argc, char *xargv)
{
int pid, status; . - _Q ')
int newfd; IO{-‘E P,U(" fk(
char *cmd[] = { "/bin/1s", "-al", "/", 0 }; P
) a1 e

}==0 Z
}g(j”£} if (arge != 2) {

fprintf (stderr, "usage: %s output_file\n", argv[0]);

exit(1);
}
if ((newfd = open(argv[1], O_CREAT|O_TRUNC|O_WRONLY, 0644)) < 0) {

perror(argv[i]); /* open failed */

exit(1);
}
printf ("writing output of the command %s to \"%s\"\n", cmd[0], argv[1]);
dup2(newfd, 1);
execvp(cmd[0], cmd); 0 Mﬂ,‘ﬁf
perror (cmd[0]) ; /* execvp failed */ l I§ & L

() hee P

exit(1);

© (S(f).a{)f Q(, 5{71""5)

)]

AN ETSR VAR
P”Vl.l_f_(um”')4 K.\“"(//
-e\(t:]'(())

TR, —
o [] N e

_—
—
—

CS 162 Summer 2019 Section 5: I/0 and Deadlock

2.2.3 Redirecting in a new process

Modify the above code such that the result of Is -al is written to the file specified by the input argument
and immediately after ”all done” is printed to the terminal. (Hint: you’ll need to use fork and wait.)

CS 162 Summer 2019

Section 5: I/O and Deadlock

2.3 Banker’s Algorithm

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and T4. The total number of

each resource as well as the current/max allocations for each thread are as follows:

/ reywo\u/-

Is the system in a safe state? If so, show a non-blocking sequence of thread executions.

Total
A|B|C
819
C ¥
Cilrrent Max

TR|A[B|C|A[B]C
T1 01212 41313
T2 21211 31619
T3 31014 31115
T4 1(13]|1 313 1|4

heed A

q 1

4 <

MO

[
20 3

2 C

l
1 &

w13 P T Run T Run T2

oofe st

Repeat the previous question if the total number of C instances is 8 instead of 9.

—

;71/[01‘- sole sl

A
l

14
(

C
O

