Section 4

Monday, July 8,2019 2:11 PM

Section 4: Scheduling and Synchronization

CS162
July 8, 2019

Contents
1 Warmup 2
2 Vocabulary 2
3 Problems 4
3.1 Locking Up the Floopies 4
3121 HiScheduling 1 F L LRCHRHE IS BRI R LRl R R 4
3.3 Simple Priority Scheduler 5
3.3.1 | Fairmess L Ll 1S RETLSERE R R PR s HC R RO 6
3.3.2 Better than Priority Scheduler? L. 7
333 radeofl == == === 7
3.4 Totally Fair Scheduler 7
34.1 Perthread quanta 7
31412 | structithread Ll b bl HiE Ll 8
3:4:3 - thread tick - oo e e e e 8
34,4 \timer anterzupt| 11l ERE R EE R S R RO 9
314.5 " Ithread| creatie [l U T EEE P P e e Rt 10
346 Analysis =i Fie s e e e e e 11
3.5 testland_set Ll L1 L. o A R 11
3.6 | Hello World |+ 2100 b e A e e e R 12
Si7_ SpaceX Problems @ .= TIE 0 P T T T T T 13

A ‘l'; C arrve @ Samﬂ\h\
Ta.q

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

T-|

8]

T

W
>~
Wy
NP
LC>

1 Warmup X9

Which of the following are true about Round Robin Scheduling?
1. The average wait time is less that that of FCFS for the same workload. F
2. Is supported by thread_tick in Pintos. T
3. It requires pre-emption to maintain uniform quanta. —T

4. If quanta is constantly updated to become the # of cpu ticks since boot, Round Robin becomes

FIFO.
FC}:S 5. If all threads in the system have the same priority, Priority Schedulers must behave like round

robin. F

6. Cache performance is likely to improve relative to FCFS. l—-

7. If no new threads are entering the system all threads will get a chance to run in the cpu every
QUANTA*SECONDS_PER_TICK*NUMTHREADS seconds. (Assuming QUANTA is in ticks). gOIV\ S

8. This is the default scheduler in Pintos T

9. It is the fairest scheduler
T T e————

2 Vocabulary

e Scheduler - The process scheduler is a part of the operating system that decides which process
runs at a certain point in time. It usually has the ability to pause a running process, move it to
the back of the running queue and start a new process;

e FIFO Scheduling - First-In-First-Out (aka First-Come-First-Serve) scheduling runs jobs as they
arrive. Turnaround time can degrade if short jobs get stuck behind long ones (convoy effect);

e Round-Robin Scheduling - Round-Robin scheduling runs each job in fixed-length time slices
(quanta). The scheduler preempts a job that exceeds its quantum and moves on, cycling through
the jobs. It avoids starvation and is good for short jobs, but context switching overhead can become
important depending on quanta length;

e Priority Scheduling - Priority scheduling runs the highest priority job, based on some assigned
priorities. Starvation of low-priority jobs and priority inversion (a higher priority task waiting for
a lower priority one, usually for a lock) are issues. Priorities can be static or dynamic, and if
dynamic can change based on heuristics or locking-related donations;

E(e SRTF Scheduling - Shortest Remaining Time First scheduling runs the job with the least re-
“maining amount of computation time and is preemptive. It has the optimally shortest average
turnaround time. In practice remaining computation time can’t be predicted, so SRTF is often
used as a post-facto benchmark for other algorithms; -3

e Multi-Level Feedback Queue Scheduling - MLFQS uses multiple queues with priorities, drop-
ping CPU-bound jobs that consume their entire quanta into lower-priority queues;

e Condition Variable - A synchronization variable that provides serialization (ensuring that events
occur in a certain order). A condition variable is associated with:

— alock (a condition variable + its lock are known together as a monitor)

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

— some boolean condition (e.g. hello < 1)

— a queue of threads waiting for the condition to be true

In order to access any CV functions OR to change the truthfulness of the condition, a thread
must/should hold the lock. Condition variables offer the following methods:

— cv_wait(cv,< lockb— Atomically unlocks the lock, adds the current thread to cv’s thread
T
queue, and pu 1s thread to sleep.

— cv_notify(cv) - Removes one thread from cv’s queue, and puts it in the ready state.
il mtuinC A ok

— cv_broadcast(cv) - Removes all threads from cv’s queue, and puts them all in the ready
state.

When a wait()ing thread is notified and put back in the ready state, it also re-acquires the lock
before the wait() function returns.

When a thread runs code that may potentially make the condition true, it should acquire the lock,
modify the condition however it needs to, call notify() or broadcast() on the condition’s CV, so
waiting threads can be notified, and finally release the lock.

Why do we need a lock anyway? Well, consider a race condition where thread 1 evaluates the
condition C' as false, then thread 2 makes condition C' true and calls cv.notify, then 1 calls
cv.wait and goes to sleep. Thread 1 might never wake up, since it went to sleep too late.

e Hoare Semantics - (In terms of condition variable) Wake a blocked thread when the condition is I F (COV‘d (}\ 1’\/) é-

) true and transfer control of the CPU and ownership of The Jock to that thread tmmediately. This

15 difficulf to implement in practice and generally not used despite being conceptually easier to (/\,01(‘(' (

deal with. >
e Mesa Semantics - (In terms of condition variable) Wake a blocked thread when the condition is
true, with no guarantee that the thread will execute immediately. The newly woken thread simply

/ gets put o Teady queue and 1s subjec chieduling mechanisms as any other thread.

The implication of this is that you must check the condition with a while loop instead of
an if statement because it is possible Tor the condition to change to false between the
time the thread was unblocked and the time it takes over the CPU.

hile (condhihiv)
Latt ()
b

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

3 Problems
3.1 Locking Up the Floopies

In section 3, you may remember encountering race conditions inside of the Central Galactic Floopy
Corporation’s currency exchange server, which runs on top of pthreads. We said that we could make the
transactions run correctly by making the balance increment/decrement atomic. The Central Galactic
Floopy Corporation hires a consultant named Morty who suggests making the increment/decrement pair
appear atomic by adding a lock to each account, and acquiring the locks when we run the transaction.

typedef struct account_t {

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZED; [(/k
int balance; P l-e\[‘eVl 6 0 4

long uuid;

};

void transfer(account_t *donor, account_t *recipient, float ount) { ,\)70,\

// lock accounts so we can make the transfer safely 0\ q
pthread_mutex_lock(&donor->lock) ; e CQ
pthread_mutex_lock(&recipient->lock); lodc

// check balances and make transfer if possible O\(Aﬁ’ ‘Mﬂ O

if (donor->balance < amount) {
printf ("Insufficient funds.\n"); C Q
} else { YQ“
donor->balance -= amount;
recipient->balance += amount;

}

// unlock accounts
pthread_mutex_unlock(&recipient->lock) ;
pthread_mutex_unlock(&donor->lock) ;

If we use the locking code given above, will the code run correctly? Has Morty introduced a new bug
into our code? Can you give an example of where this code would fail?

Can you modify the code above to resolve this bug?

3.2 Scheduling

Consider the following single-threaded processes and their arrival times, CPU bursts, and priority

Process Arrival Time CPU Burst Priority
A 1 5 1
B 3 3 3
C 5 2 2
D 4 4 4

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

Please note:
e Priority scheduler is preemptive.

e Newly arrived processes are scheduled last for RR. When the RR quanta expires, the currently
running thread is added at the end of to the ready list before any newly arriving threads.

e Break ties via priority in Shortest Remaining Time First (SRTF).

/o If a process arrives at time x, they are ready to run at the beginning of time x.

e Ignore context switching overhead.
e The quanta for RR is 1 unit of time.
e Total turnaround time is the time a process takes to complete after it arrives.

Fill in the following scheduling table and calculate the total turnaround time for each scheduling

algorithm

Time FIFO RR__ | QW SRIF Priority
LA AU DA A A
2 A- A A A
3 2 il b A [Ad 23
+ D A g [BAD R

o | ST A (AR R

6] B D DBy C

7 il i2 | !

g - b5clc | [A
9 D /\‘1 ’ A
10 V) D A
1 DIININEA 1%
12 e D
13 G D
14 all e o D
$(1)Itrz£ Turnaround (; Q ,-% 7 1’_7_

3.3 Simple Priority Scheduler

We are going to implement a new scheduler in Pintos we will call it SPS. We will just split threads into
two priorities "high” and ”low”. High priority threads should always be scheduled before low priority
threads. Turns out we can do this without expensive list operations.

For this question make the following assumptions:

e Priority Scheduling is NOT implemented

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

°

High priority threads will have priority 1

e Low priority threads will have priority 0

e The priorities are set correctly and will never be less than 0 or greater than 1

e The priority of the thread can be accessed in the field int priority in struct thread
e The scheduler treats the ready queue like a FIFO queue

e Dont worry about pre-emption.

Modify thread_unblock so SPS works correctly.
You are not allowed to use any non constant time list operations

void
thread_unblock (struct thread *t)
{
enum intr_level old_level;
ASSERT (is_thread (t));
old_level = intr_disable ();
ASSERT (t->status == THREAD_BLOCKED) ;

list_push_back (&ready_list, &t->elem);

t->status = THREAD_READY;
intr_set_level (old_level);

}

3.3.1 Fairness

In order for this scheduler to be ”fair” briefly describe when you would make a thread high priority and
when you would make a thread low priority.

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

3.3.2 Better than Priority Scheduler?

If we let the user set the priorities of this scheduler with set_priority, why might this scheduler be
preferable to the normal pintos priority scheduler?

3.3.3 Tradeoff

How can we trade off between the coarse granularity of SPS and the super fine granularity of normal
priority scheduling? (Assuming we still want this fast insert)

3.4 Totally Fair Scheduler

You design a new scheduler, you call it TFS. The idea is relatively simple, in the begining, we have
three values BIG_QUANTA, MIN_LATENCY and MIN_QUANTA. We want to try and schedule all threads every
MIN_LATENCY ticks, so they can get atleast a little work done, but we also want to make sure they run
atleast MIN_QUANTA ticks. In addition to this we want to account for priorities. We want a threads
priority to be inversely proportial to its vruntime or the amount of ticks its spent in the CPU in the
last BIG_QUANTA ticks.

You may make the following assumptions in this problem:

e Priority scheduling in Pintos is functioning properly,
e Priority donation is not implemented.

e Alarm is not implemented.

e thread_set_priority is never called by the thread

e You may ignore the limited set of priorities enforced by pintos (priority values may span any float
value)

e For simplicity assume floating point operations work in the kernel

3.4.1 Per thread quanta

How long will a particular thread run? (use the threads priority value)

CS 162 Summer 2019

Section 4: Scheduling and Synchronization

3.4.2 struct thread

Below is the declaration of struct thread. What field(s) would we need to add to make TFS possible?

You may not need all the blanks.

struct thread

{
/* Owned by thread.c. */

tid_t tid; /*
enum thread_status status; /*
char name[16]; /%
uint8_t *stack; /%

float priority;
struct list_elem allelem;

/* Shared between thread.c and synch.c. */

struct list_elem elem; /* List
#ifdef USERPROG

/* Owned by userprog/process.c. */

uint32_t *pagedir; /*
#endif

_____ i AR /* What

_____ /* What

_____ /* What

/* Owned by thread.c. */
unsigned magic;
};

3.4.3 thread tick

Thread identifier. */

Thread state. */

Name (for debugging purposes). */
Saved stack pointer. */

/* Priority, as a float. */

/* List element for all threads list. */

element. */

Page directory. */
goes here? */
goes here? */

goes here? */

/* Detects stack overflow. */

What is needed for thread_tick() for TFS to work properly? You may not need all the blanks.

void
thread_tick (void)
{
struct thread *t = thread_current ();
/* Update statistics. */
if (t == idle_thread)
idle_ticks++;
#ifdef USERPROG
else if (t->pagedir != NULL)
user_ticks++;
#endif
else
kernel_ticks++;

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

/* Enforce preemption. */
if (++thread_ticks >= TIME_SLICE) { /* TIME_SLICE may need to be replaced with something else */
intr_yield_on_return ();

3.4.4 timer interrupt
What is needed for timer_interrupt for TFS to function properly.

static void
timer_interrupt (struct intr_frame *args UNUSED)

{
ticks++;

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

thread_tick ();
}

3.4.5 thread create

What is needed for thread_create() for TFS to work properly? You may not need all the blanks.

tid_t
thread_create (const char *name, int priority, thread_func *function, void *aux)
{

/* Body of thread_create omitted for brevity */

/* Add to run queue. */

thread_unblock (t);

if (priority > thread_get_priority ()
thread_yield ();

return tid;

10

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

3.4.6 Analysis

Explain the high level behavior of this scheduler; what exactly is it trying to do? How is it differen-
t/similar from/to the multilevel feedback scheduler from the project?

3.5 test_and set
volvt
In the following code, we use test_and_set to emulate locks. J~Z. S

int value = 0; ﬁ—/ \

int hello = 0;

void print_hello() { / re“\/\/ S X

while (test_and_set(&value));

hello += 1;

printf("Child thread: %d\n", hello);
value = 0;

pthread_exit(0); \ g \L) b\(—Q
}

void main() { 0 I
pthread_t threadil; >
pthread_t thread2;

pthread_create(&threadl, NULL, (void *) &print_hello, NULL);
pthread_create(&thread2, NULL, (void *) &print_hello, NULL);

while (test_and_set(&value));
printf ("Parent thread: %d\n", hello); @_—9! })
value = 0;

¥

Assume the following sequence of events: f‘C'L‘/‘M l

. Main starts running and creates both threads and is then context switched right after
. Thread?2 is scheduled and run until after it increments hello and is context switched

. Threadl runs until it is context switched

The thread running main resumes and runs until it get context switched

. Thread2 runs to completion

. The thread running main runs to completion (but doesn’t exit yet)

. Threadl runs to completion

oG A W~

11

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

Is this sequence of events possible? Why or why not?

At each step where test_and_set (&value) is called, what value(s) does it return?

Given this sequence of events, what will C print?

Is this implementation better than using locks? Explain your rationale.

3.6 Hello World

This code compiles (given a sprinkling of #includes etc.) but doesn’t work properly. Why?
pthread_mutex_t lock; C/>
pthread_cond_t cv; ('g l()(/\
int hello = 0;
3 &q
. . . [_ob\c/d\
void* print_hello(void* arg) {

hello += 1; \e([«g(,
(o(«\(m’(E

printf ("First line (hello=%d)\n", hello);
pthread_cond_signal (&cv) ;
pthread_exit(0);

} ’(J"qd— ’l'b MH\YA lF(’e- L"(’\:

int main() { L/
/ pthread_t thread;
pthread_create(&thr?zd, NULL, print_hello, NULL); w [O(/k
/7while (hello < 1) { ol\d‘ V\b'i' C‘C‘((’“
pthread_cond_wait (&cv, &lock); k !

loc\c,ac,qu,ye &(°d(’> hehw o.all,y\‘ﬁ wahL

12

CS 162 Summer 2019 Section 4: Scheduling and Synchronization

}

printf("Second line (hello=%d)\n", hello); P [DT/[,C. _,/G'[-QMS*L (&/OC[C)

return O;

Add in the necessary code to the above problem to make it work correctly.

3.7 SpaceX Problems

Consider this program.

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cv = PTHREAD_COND_INITIALIZER;

int n = 3;

void* counter(void* arg) {
pthread_mutex_lock(&lock) ; , (
for (n = 3; n> 0; n--) o
printf ("%d\n", n); y\ i
pthread_cond_signal (&cv);
pthread_mutex_unlock(&lock) ;
}

0

void* announcer(void* arg) -&_
while (n '= 0) {
pthread_mutex_lock(&lock) ;
pthread_cond_wait (&cv, &lock); q»f\,\d(
.ﬂ pthread_mutex_unlock(&lock) ;
}
printf ("FALCON HEAVY TOUCH DOWN!\n");
}

int main() {
pthread_t t1, t2;
pthread_create(&t1l, NULL, counter, NULL);
pthread_create(&t2, NULL, announcer, NULL);
pthread_join(t1l, NULL);
pthread_join(t2, NULL);
return O;

}

What is wrong with this code?

13

