Section 3 Notes

Section 3: Threads and Locks

CS162
July 3, 2019

Contents
1 Vocabulary

2 Problems
2.1 Hello World e e
2.2 Join ... e
2.3 Stack Allocation
2.4 Heap Allocation e
2.5 Threads and Processes e
2.6 The Central Galactic Floopy Corporation
2.7 All Threads Must Die

CS 162 Summer 2019 Section 3: Threads and Locks

1 Vocabulary

Thread - a thread of execution is the smallest unit of sequential instructions that can be scheduled
for execution by the operating system. Multiple threads can share the same address space, but
each thread independently operates using its own program counter.

pthreads - A POSIX-compliant (standard specified by IEEE) implementation of threads. A
pthread_t is usually just an alias for “unsigned long int”.

pthread_create - Creates and immediately starts a child thread running in the same address space
of the thread that spawned it. The child executes starting from the function specified. Internally,
this is implemented by calling the clone syscall.

/* On success, pthread_create() returns 0; on error, it returns an error
* number, and the contents of *thread are undefined. */

int pthread_create(pthread_t *thread, const pthread_attr_t *attr, .
void *(*start_routine) (void *), void *arg); - {.Q_—{'L\(Q ‘F\AV\C('WV)
. . h b eXelu
~ \'{’ as Qby

pthread_join - Waits for a specific thread to terminate, similar to waitpid(3).

- ~+¢ knowd wovlc 1§ Oloy\e'
/* On success, pthread_join() returns O; on error, it returns an error number. */
int pthread_join(pthread_t thread, void **retval);

pthread_yield - Equivalent to thread_yield() in Pintos. Causes the calling thread to vacate the
CPU and go back into the ready queue without blocking. The calling thread is able to be scheduled
again immediately. This is not the same as an interrupt and will succeed in Pintos even if interrupts
are disabled.

/* On success, pthread_yield() returns O; on error, it returns an error number. */
int pthread_yield(void);

Atomic operation - An operation that appears to be indivisible to observers. Atomic operations
must execute to completion or not at all.

Critical section - A section of code that accesses a shared resource and must not be concurrently
run by more than a single thread.
\—-—-,_—\

Race condition - A situation whose outcome is dependent on the sequence of execution of multiple
threads running simultaneously.

Lock - Synchronization variables that provide mutual exclusion. Threads may acquire or release
a lock. Only one thread may hold a lock at a time. If a thread attempts to acquire a lock that
is held by some other thread, it will block at that line of code until the lock is released and it
successfully acquires it. Implementatiofls camr vary:

Scheduler - Routine in the kernel that picks which thread to run next given a vacant CPU and
a ready queue of unblocked threads. See next_thread to_run() in Pintos.

Priority Inversion - If a higher priority thread is blocking on a resource (a lock, as far as
you're concerned but it could be the Disk or other I/O device in practice) that a lower priority
thread holds exclusive access to, the priorities are said to be inverted. The higher priority thread
cannot continue until the lower priority thread releases the resource. This can be amended by
implementing priority donation.

CS 162 Summer 2019 Section 3: Threads and Locks

e Priority Donation - If a thread attempts to acquire a resource (lock) that is currently being held,
it donates its effective priority to the holder of that resource. This must be done recursively until
a thread holding no locks is found, even if the current thread has a lower priority than the current
resource holder. (Think about what would happen if you didn’t do this and a third thread with
higher priority than either of the two current ones donates to the original donor.) Each thread’s
effective priority becomes the max of all donated priorities and its original priority.

2 Problems

2.1 Hello World
What does C print in the following code?

Accume atmks succeed

void* identify(void* arg) {
pid_t pid = getpid();
printf("My pid is %d\n", pid);
return NULL;

int main() {
pthread_t thread;
pthread_create(&thread, NULL, &identify, NULL);

identify (NULL);
return O;
}
My P& is YXKK either Twite or onle
N
2.2 Join

What does C print in the following code? Mlh () {}‘hESLOS bQ{UYQ
(Hint: There may be zero, one, or multiple answers.) _H/[v .
ol gek s rv

void *helper(void *arg) {
printf ("HELPER\n") ;
return NULL;

int main() {
pthread_t thread;

pthread_create(&thread, NULL, &helper, NULL); ~
pthread_yield); £— () na rwrfee, [,Jha‘l' 9 5S¢ l/\eo(v«lc('} '/\e.;c{:
printf ("MAIN\n") ; 9

return O; mm‘W\ Cuﬂ be_ gﬁ‘@d‘fd 090‘“,\‘

Mol m N\a' R
|

e &
3

CS 162 Summer 2019

Section 3: Threads and Locks

How can we modify the code above to always print out "HELPER" followed by "MAIN"?

P -y #tleh()=> prhreadt Sin(threaat, NULL) S

2.3 Stack Allocation
What does C print in the following code?

void *helper(void *arg) {
int *num = (int*) arg;
*num = 2;
return NULL;

int main() {
int 1 = 0;
pthread_t thread;
pthread_create(&thread, NULL, &helper, &i);
pthread_join(thread, NULL);
printf("i is %d\n", i);
return O;

——

1 s oL

2.4 Heap Allocation
What does C print in the following code?

void *helper(void *arg) {
char *message = (char *) arg;
strcpy(message, "I am the child");
return NULL;

int main() {
char *message = malloc(100);
strcpy(message, "I am the parent");
pthread_t thread;
pthread_create(&thread, NULL, &helper, message);
pthread_join(thread, NULL);
printf("%s\n", message);
return O;

j: am -H‘\L CI’\JJ 4

CS 162 Summer 2019

Section 3: Threads and Locks

B

/

2.5 Threads and Processes

What does C print in the following code?
(Hint: There may be zero, one, or multiple answers.)

void *worker(void *arg) {
int *data = (int *) arg;
*data = *data + 1;
printf("Data is %d\n", *data);
return (void *) 42;

int data;

int main() {
int status;
data = 0;
pthread_t thread;

ﬂ\ Y“U‘g&wb
G &M

pid_t pid = fork();&’Ng ~, (N YOWN
if (pid == 0) { R s)
pthread_create (&t
pthread_join(thread, NULL);
} else {

pthread_join(thread, NULL)

pthread_create(&thread, NULL, &worker, &data);
pthread_create(&thread, NULL, &worker, &data); 3

pthread_join(thread, NULL);

read, NULL, &worker, &data);

dhodun= b
9

>fL

—

Can be

P+
Mhkneaved

wait (&status); (: ’,/;? P

}

return O; - I l

, t 0; i \> -—7 | oy 2

/] A :z |
IL- 4
1 A
il 1

How would you retrieve the return value of worker? (e.g. 742”)

l/\a\\le_ i rd’\/«/m,_ Ua\lud--

Wit ek val

Fhaad Join (e, L reho)

CS 162 Summer 2019 Section 3: Threads and Locks

2.6 The Central Galactic Floopy Corporation

It’s the year 3162. Floopies are the widely recognized galactic currency. Floopies are represented in
digital form only, at the Central Galactic Floopy Corporation (CGFC).

You receive some inside intel from the CGFC that they have a Galaxynet server running on some old
OS called x86 Ubuntu 14.04 LTS. Anyone can send requests to it. Upon receiving a request, the server
forks a POSIX thread to handle the request. In particular, you are told that sending a transfer request
will create a thread that will run the following function immediately, for speedy service.

void transfer(account_t *donor, account_t *recipient, float amount) {
assert (donor != recipient);

if (donor->balance < amount) {

printf ("Insufficient funds.\n"); = Can Pags Cbe_(_k_ W/6

return;
A— cf-——'m'}eWU‘P"— l’\ev";‘ﬂ% (-) baloance

donor->balance -= amount; V\uVMQ enowv
bt NOT

recipient->balance += amount;

¥ - WI/VP} th -I'(VVI'F: b“lw'g%ambzck = Cotn ek

Assume that there is some struct with a member balance that is typedef-ed as account_t. a Vo l\N. lﬂ'\'ef
Describe how a malicious user might exploit some unintended behavior.

| reaprnt—> baluha += oot 1S 7O~ FDMIC

/
Some -]CW\P = balance A$$€M17lj
Y‘f’WlOmVlj Kimp :-l-cmp—-amf eoke. (Hzplao.

! - T ~ \Jurs Yecicles<)
Since ycl)aué'i“g"z{d éﬁgd f)'efi’(slmvgo wouldn’t steal\éoopies f\;\c:’myzfgz{fz!é&ﬁo)rporation, what changes would
you suggest to the CGFC to defend against this exploit?

s .
acqurt | lock fr all $yons achins — shi .

unreladed transrs wdbe You ha‘w + waifF 4.
alhuirt lode for each altomt
(}faolIOCK? . / U/D(e
6 \M/———-V
T B e of ey # st
heed occ # , oGt o
A

A 2
(ol A at A
ex. OCol_(ﬂ) <’>< 6cq “7’) ¢ = aulq 14 “Cﬁtq B
a(_(‘t(P:)z acq (A) hot ovole
N6 exe twni "/
G cle ; et ends h deacilsclC
/

CS 162 Summer 2019 Section 3: Threads and Locks

2.7 All Threads Must Die

You have three Pintos threads with the associated priorities shown below. They each run the functions
with their respective names.

Tyrion : 4 5(1\”"‘}“»‘9 Lb’()\f;((d/‘
Ned: 5 Con

Gandalf: 12~ ’?>

Assume upon execution that all threads are unblocked and begin at the top of their code blocks. The
operating system runs with a preemptive priority scheduler. You may assume that set_priority commands
are atomic. (Note: The following uses references to Pintos locks and data structures.)

struct list brace_yourself; // pintos list. Assume it’s already initialized and populated.
struct lock midterm; // pintos lock. Already initialized.
struct lock is_coming;

void tyrion(){

S-thread_set_priority(lQ);

& lock_acquire(&midterm) ; [olodf S
lock_release(&midterm) ;
thread_exit();

}

V(%d ned () {

lock_acquire(&midterm) ;

q lock_acquire(&is_coming) ; ’IOIOCJ‘LS
list_remove(list_head(brace_yourself));
lock_release(&midterm) ;
lock_release(&is_coming);
thread_exit(); \

+

void gandalf (){
\ lock_acquire(&is_coming);
thread_set_priority(3);
J- while (thread get_priority() < 11) { (‘\ [<
< printf("YOU .. SHALL NOT .. PAAASS!!I!1I1); 60?
timer_sleep(20); v
}
lock_release(&is_coming) ;
thread_exit();

¥

What is the output of this program when there is no priority donation? Trace the program execution
and number the lines in the order in which they are executed.

Qamdit[(l pr.hjz evey N0 <eCond'S ,o’ﬁur Fhreads
{,wH’ NEp

CS 162 Summer 2019 Section 3: Threads and Locks

What is the output and order of line execution if priority donation was implemented? Draw a diagram
of the three threads and two locks that shows how you would use data structures and struct members
(variables and pointers, etc) to implement priority donation for this example.

- priooty of Tyrim h b 1A beke
Ctu(uiY.hj [oclec .

