Section 2

Monday, July 1, 2019 2:05 PM

Section 3: Process Wrap-up and Syscalls

July 1, 2019

Contents
1 Reference
1.1 Process Vocabulary (continuation from last week’s worksheet)
1.2 Syscall Vocabulary e
1.3 Signals oL e
2 Process Problems
2.1 Simple Wait L e
2.2 EXec . ..o
2.3 Exec+ Fork. . . . o e
2.4 TImplementing fork() efficiently (Design)
3 Signal Problems
3.1 Using Your Keyboard e
3.2 Signalin Action. L
3.3 Sigaction in Action
3.4 More Sigaction L

CS 162 Summer 2019 Section 3: Process Wrap-up and Syscalls

1

1.1

exdl Gode

(

Reference ‘pbf\i C«) o~ §F0(MV\S neiy PYOC’C’JS’

Process Vocabulary (continuation from last week’s worksheet)

v_\Ei_t - A class of C functions that call syscalls, which are used to wait for state changes in a child
of the calling process and obtain information about the child whose state has changed. A state
change is considered to be: the child terminated; the child was stopped by a signal; or the child
was resumed by a signal.

exit code - The exit status or return code of a process is a 1 byte number passed from a child
process (or callee) to a parent process (or caller) when it has finished executing a specific procedure
or delegated task

exec - The exec() family of functions replaces the current process image with a new process image.
The initial argument for these functions is the name of a file that is to be executed.

Syscall Vocabulary

system call - In computing, a system call is how a program requests a service from an operat-
ing system’s kernel. This may include hardware-related services, creation and execution of new
processes, and communication with integral kernel services such as process scheduling.

Signals - A signal is a software interrupt, a way to communicate information to a process about
the state of other processes, the operating system, and the hardware. A signal is an interrupt in
the sense that it can change the flow of the program when a signal is delivered to a process, the
process will stop what its doing, either handle or ignore the signal, or in some caseS terminate,

depending on the signal. ; ,‘Qy\al (SI'GJ/ZINT/ l’\&mo‘].Q.—Z V\+— }

int signal(int signum, void (*handler)(int)) - signal() is a system call for signal handling,
which given a signal and function, will execute the function whenever the signal is delivered. This
function is called the signal handler because it handles the signal. Signal is deprecated and sigaction
should be used instead; however, signal is useful tool in understanding how these syscalls work.

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact) - sigaction
is a system call used to change the action taken by a process on receipt of a specific signal. If
act is non-NULL, the new action for signal signum is installed from act. If oldact is non-NULL,
the previous action is saved in oldact. Prior to making the sigaction call, the user must create a
sigaction struct and populate its fields appropriately.

struct sigaction {

void (*sa_handler) (int);

void (*sa_sigaction) (int, siginfo_t *, void *);
sigset_t sa_mask;

int sa_flags;

void (*sa_restorer) (void) ;

}

SIG_IGN, SIG_DFL Usually the sa_handler takes a user defined handler for the signal. However,
if you’d like your process to drop the signal you can use SIG_IGN. If you'd like your process to do
the default behavior for the signal use SIG_DFL.

CS 162 Summer 2019 Section 3: Process Wrap-up and Syscalls

1.3 Signals

The following is a list of standard Linux signals:

Signal Value Action Comment

SIGHUP 1 Terminate Hangup detected on controlling terminal

or death of controlling process

SIGINT 2 Terminate Interrupt from keyboard (Ctrl - c)
STEﬁﬁiT 3 Core Dump Quit from keyboard (Ctrl - \)
SIGILL i Core Dump Illegal Instruction
SIGABRT 6 Core Dump Avort signal from abort(3)
SIGFPE 8 Core Dump Floating point exception
SIGKILL g‘) Terminate Kill signal
SIGSEGV Core Dump Invalid memory reference
SIGPIPE 13 Terminate Broken pipe: write to pipe with no
readers
SIGALRM 14 Terminate Timer signal from alarm(2)
SIGTERM (15 > Terminate Termination signal
IGUSR1 30,10,16 Terminate User-defined signal 1
SIGUSR2 31,12,17 Terminate User-defined signal 2
SIGCHLD 20,17,18 Ignore Child stopped or terminated
SIGCONT 19,18,25 Continue Continue if stopped
SIGSTOP 17,19,23 Stop Stop process
SIGTSTP 18,20,24 Stop Stop typed at tty
SIGTTIN 21,21,26 Stop tty input for background process
SIGTTOU 22,22,27 Stop tty output for background Ea;cess

2 Process Problems

2.1 Simple Wait
What can C print? Assume the child PID is 90210.

int main(void)

{
pid_t pid = fork(Q); ¥

int exit; l z ‘* 0
if (pid '= 0) { N (,_ exiT,)
wait (&exit); Wﬂﬂ- P‘A /

}

printf("Hello World\n: %d\n", pid);

})

R/
T)
Pw\“—@ﬁ"

v
A

kil =9

O« —)

A0 (0

CS 162 Summer 2019 Section 3: Process Wrap-up and Syscalls

What is the equivalent program using the waitpid function instead of wait? (v)

nly QoY

i {Lexit) ok pich (40210, 42vit, Q)
wadpick (=1)
Wﬂl‘+(-_-> == wa‘t'h)\)d (—l/__) ,(qny child

2.2 Exec
What will C print?

int main(void)

{

}

char*x argv = (char**) malloc(3*sizeof (charx*));
argv[0] = "/bin/1s";

argv[1] = "."; __6 é
argv[2] = NULL; (k \)

for (int i = 0; 1 < 10; i++) § PymH () /

e € G
execv("/bin/1ls", argv);-} execv L- e J
Z 3
®
\
2
>
¢ whatevte g pmf‘é snf >

CS 162 Summer 2019 Section 3: Process Wrap-up and Syscalls

2.3 Exec + Fork

How would I modify the above program using fork so it both prints the output of 1s and all the numbers

from 0 to 9 (order does not matter)? You may not remove or reorder lines from the original program;
only add statements (and use forkT).

e £ (2e2) O
: ==3
ot ‘-FP%_-Q i i B\ ;
i (@d==0)%
exeev(..). s

I

7 -
C

R

('\

A
2.4 Implementing fork() efficiently (Design) .

Remember fork() makes the child process’s address space exactly the same as its parent’s. If you were
designing an OS, list some steps you would take to make this address space copy more efficient 7

C,OP% -ON - Lo it

3 Signal Problems

3.1 Using Your Keyboard](l l \ "1 P‘l d

How do we stop the following program?

int main(){
signal(SIGINT, SIG_IGN);
while(1);

' o76,6uiT (Ol = \)

CS 162 Summer 2019 Section 3: Process Wrap-up and Syscalls

3.2 Signal in Action

Fill in the blanks for the following function using syscalls such that when we type Ctrl-C, the user is
prompted with a message: “Do you really want to quit [y/n]? 7, and if “y” is typed, the program quits.

Otherwise, it continues along.

void sigint_handler(int sig)

{
char c;
printf (Ouch, you just hit Ctrl-C?. Do you really want to quit [y/nl?);
= getchar();
if (¢ ==y’ || ¢ == ’Y’)
. e+ (6) v

int mai ()?il“1 g‘ IQ_IA} T S lﬁlth“)/\O"\JL.)

}

3.3 Sigaction in Action

How would you change the main function to use sigaction instead of signal?

int main() {

stvuct s‘.cjao‘»m sa;
ca. . §0tu-p[a <

S1gtmpty set (g- Sa .G _mogie

Sa. Ca,.Jr\c.,,\er €lqM1L handev]

}

STHRCTOT S T(GINT g_ g, ot
~— (o}
3.4 More Sigaction 9 K / s

Q Z\
Lets say you wanted to move the signal handler from SIGINT to SIGQUIT. How would you do that
without manually constructing ansther sigaction struct?

. - ' §+Y1/‘ S 9 achim o _ move’
Sigachon (SLGINT, NULL A

o

LLY;

o move)
5\190(0"'101/\ (§I (D@ UI_/Z ’/‘by\AM/

NULL)

