Section 1 Notes

Wednesday, June 26,2019 1:15PM

Section 1: Processes and Address Space

June 26, 2019

Contents
1 Vocabulary

2 Warmup
2.1 Pointer and C Programming Practice

3 Problems
3.1 Hello World
3.2 Forks. e e
3.3 Stack Allocation
34 Heap Allocation L
3.5 Slightly More Complex Heap Allocation

CS 162 Summer 2019 Section 1: Processes and Address Space

1 Vocabulary

e process - a process is an instance of a computer program that is being executed. It consists of an
address space and one or more threads of control.

e address space - The address space for a process is the set of memory addresses that it can use.
IIS’—\-MT—_ The address space for each process is private and cannot be accessed by other processes unless it
is shared.

p stack - The stack is the memory set aside as scratch space for a thread of execution. When a
e . ,(_r, — ~| function is called, a block is reserved on the top of the stack for local variables and some book-
[,\ keeping data. When that function returns, the block becomes unused and can be used the next

time a function is called. The stack is always reserved in a LIFO (last in first out) order; the most
s—]—”‘—; C recently reserved block is always the next block to be freed.

CQdL p heap - The heap is memory set aside for dynamic allocation. Unlike the stack, there’s no enforced
— | pattern to the allocation and deallocation of blocks from the heap; you can allocate a block at any
time and free it at any time.

e fork - A C function that calls the fork syscall that creates a new process by duplicating the calling
process. The new process, referred to as the child, is an exact duplicate of the calling process
(except for a few details, read more in the man page). Both the newly created process and the
parent process return from the call to fork. On success, the PID of the child process is returned in
the parent, and 0 is returned in the child. On failure, -1 is returned in the parent, no child process

is created. - . :
int ok =Loc () F =20 = child
picd =forle() {f,\d > 0 2 potnt with,
pidt beig Child pid
2.1 Pointer and C Programming Practice P "d = —l = ‘Qa ; I

Write a function that places source inside of dest, starting at the offset position of dest. This is effectively
swapping the tail-end of dest with the string contained in source (including the null terminator). Assume
both are null-terminated and the programmer will never overflow dest. As a fun exercise to remember C
tricks, try to see if you can shorten your code to as few lines as possible without using libraries or lines
with multiple semicolons!

2 Warmup

void replace(char *dest, char *source, int offset)

" et 4= offset;
While (¥ Sowrea) %

¥clesk=z# Sowcce s,

InnL L o
oest 717,

Ssure e_+1-/‘

M MST = XSawk

CS 162 Summer 2019 Section 1: Processes and Address Space

3 Problems

3.1 Hello World

What can C print in the below code? Assume the child’s PID is 90210
(Hint: There is more than one correct answer)

int main() {
pid_t pid = fork();

I;rintf("Hello World: %d\n", pid); P__.)C C_» P ,':a l/
N I ~ . 7~]

Hello Worlg; JOXRTO ®

[/fe,”o Weeld 1 O C{OQ\l 0 / L/el/o W (ot o

3.2 Forks

How many new processes are created in the below program assuming calls to fork succeeds?

int main(void)
{
for (int i = 0; i < 3; i++) {
pid_t pid 5 fork();
}
}

_I/ [/ h[__]_j‘{:l%) % 4l proceSsep

) ____ | (2 creaded

CS 162 Summer 2019

Section 1: Processes and Address Space

3.3 Stack Allocation

What can C print?

int main(void)
{
int stuff = 21;
pid_t pid = fork(Q);
printf ("9 plus 10 equals %d\n", stuff);
if (pid == 0)
stuff = 19;

poent Ade childh Adde

SJ' (/\TCF 1)[’@

A plus 1o equar'S |
% 78

heh \)Y.Y\Jf

9 P}V\S 10 equals |

ek Gals

3.4 Heap Allocation LQMF Q‘PO(C,Q_, }S @P)}:d 6\19/\/ SS

What can C print? §4‘M3€ - (q (am’)o{' d’]ange {,J]/WL Pém,h(_

int main(void) ’Pr (\/\ \‘g
{

int* stuff = malloc(sizeof(int)*1);

*stuff = 21;

pid_t pid = fork(Q);

printf ("9 plus 10 equals %d\n", *stuff);

if (pid == 0)

*stuff = 19

the) own_addr space

SOML apswer as okose. [Proceego hgye

CS 162 Summer 2019

Section 1: Processes and Address Space

3.5 Slightly More Complex Heap Allocation

What does C print in this case ?

void printTenNumbers(int *arr)

{

int

int 1i;

printf("\n");

for(i=0; i<10; i++) {
printf ("%d",arr[i]);

}

exit (0);

main()

int *arr, i;
arr = (int *) malloc (sizeof(int));
arr[0] = 0;

for(i=1; i<10; i++) {

arr = (int *) realloc(arr, (i+1) * sizeof(int));
arr[i] = i;
if (1 ==7) {

pid_t pid = fork();
if (pid == 0) {
printTenNumbers (arr) ;

¥
}
}

printTenNumbers (arr) ;

O1x3Yc(+ (ge@—ﬁwlf v gar}mqe)

ot ... 9 ﬁ,por(’m[’

