Section 12 Notes

Section 12: Cache, Clock Algorithm, and Demand Paging

Contents
1 Vocabulary

2 Problems
2.1 Caching
2.2 Clock Algorithm
2.3 Demand Paging
2.4 Virtual Memory
2.5 Page Allocation

(CS162
August 5, 2019

2.6 Address Translation
2.7 Inverted Page Tables

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

1 Vocabulary V\C"Q" SQ-)L%. wr kne
't

Compulsory Miss The miss that occurs on the first reference to a block. There’s essentially
nothing that you can do about this type of miss, but over the course of time, compulsory misses
become insignificant compared to all the other memory accesses that occur.

Capacity Miss This miss occurs when the cache can’t contain all the blocks that the program
accesses. Usually the solution to capacity misses is to increase the cache size.

Conflict Miss Conflict misses occur when multiple memory locations are mapped to the same
cache location. In order to prevent conflict misses, you should either increase the cache size or
increase the associativity of the cache.

Coherence Miss Coherence misses are caused by external processors or I/O devices that updates
what’s in memory.

Working set The subset of the address space that a process uses as it executes. Generally we can
say that as the cache hit rate increases, more of the working set is being added to the cache.

Thrashing Phenomenon that occurs when a computer’s virtual memory subsystem is constantly
paging (exchanging data in memory for data on disk). This can lead to significant application
slowdown.

Inverted Page Table - The inverted page table scheme uses a page table that contains an entry
for each phiscial frame, not for each logical page. This ensures that the table occupies a fixed
fraction of memory. The size is proportional to physical memory, not the virtual address space.
The inverted page table is a global structure — there is only one in the entire system. It stores
reverse mappings for all processes. Each entry in the inverted table contains has a tag containing
the task id and the virtual address for each page. These mappings are usually stored in associative
memory (remember fully associative caches from 61C?). Associatively addressed memory compares
input search data (tag) against a table of stored data, and returns the address of matching data.
They can also use actual hash maps.

Translation Lookaside Buffer (TLB) - A translation lookaside buffer (TLB) is a cache that
memory management hardware uses to improve virtual address translation speed. It stores virtual
address to physical address mappings, so that the MMU can store recently used address mappings
instead of having to retrieve them mutliple times through page table accesses.

dkbryg/h

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

2 Problems
2.1 Caching

An up-and-coming big data startup has just hired you do help design their new memory system for a
byte-addressable system. Suppose the virtual and physical memory address space is 32 bits with a 4KB
page size. -

First, you create 1) a direct mapped cache and 2) a fully associative cache of the same size that
replaces the least recently used pages when the cache is full. You run a few tests and realize that the
fully associative cache performs much worse than the direct mapped cache. What’s a possible access

o —_—
pattern that could cause thlslﬁo ﬁ?%lﬁnc,ml"cabl" dbar ovF — MBQ; ow {y 6w 0. ¢

y}lV\C.ooM & Gccess S Hlacks rc_le’fO”j T01239
| FA cadw [Bx3) 11— LRV 9ety evickdt before
—_— 40 | misso S
3 = —2 G
Instead, your boss tells you to build a 8 f%/‘get associative cache with 64 byte cache blocks.

f_

How would you split a given virtual address into

l>-::7 hKax + of Btk = |'31}s s SA 7 T

%(, o bt bits e 7 2 20 (
(13-6-3 v L'k)/;z = G mech

You finish building the cache, and you want to show your boss that there was a significant improve-
ment in average read time. Suppose your system uses a two level page table to translate virtual addresses
and your system uses the cache for the translation tables and data. Fach memory access takes 50ns, the
cache lookup time is 5ns, and your cache hit rate is 90%. What is the average time to read a location

fi ?
I o R P = 5 0,150 = [Dns
T= -

its tag, index, and offset numbers?

[0o Fv/’/

P\ 7\’ ! s
f / 3| Lons

(
{
-

use

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

2.2 Clock Algorithm

Suppose that we have a 32-bit virtual address split as follows:

10 Bits 10 Bits | 12 Bits

Table ID | Page ID | Offset ’39 lg’}))L\ 75
&7 poldr

Show the format of a PTE complete with bits required to support the clock algorithm.

P DAy U Wik mf g

e

ik 30 (|) \ %

For this problem,assume that physical memory can hold at most four pages. What pages remain in
memory at the end of the following sequence of page table operations and what are the use bits set to
for each of these pages:
- Page A is accessed Vse
- Page B is accessed [/f/ 6)
- Page C is accessed
- Page A i d

age A is accesse JSe e
- Page C is accessed
- Page D is accessed D X ‘ K {: »f//@' |

. /

- Page B is accessed (o
- Page D is accessed
- Page A is accessed

- Page E is accessed Jse

- Page I is accessed @ C ¥ o
EECLD

1 | (o O

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

2.3 Demand Paging

Your boss has been so impressed with your work designing the caching that he has asked for your advice
on designing a TLB to use for this system. Suppose you know that there will only be 4 processes
running at the same time, each with a Resident Set Size (RSS) of 512MB and a working set size of
256KB. Assuming the same system as the previous problem (32 bit virtual and physical address space,
4KB page size), what is the minimum amount of TLB entries that your system would need to support
to be able to map/cache the working set size for one process? What happens if you have more entries?
What about less?

TSCEB (| oges= &Y fyanslaes > (. enfies
W - | § Clowin loch“P{_‘zz“Hﬂ
kg St
q°"" /\: s 2 bak, (ot e;t:; Shove WO
ﬂ};’;\j{ M“khY}PEL% o $ P'VQ

Suppose you run' some benchmarks on the system and you see that the system is utilizing over 99% of
its paging disk IO capacity, but only 10% of its CPU. What is a combination of the of disk space and
memory size that can cause this to occur? Assume you have TLB entries equal to the answer from the
previous part.

/W\TGQ\'\\V\Q~ CP\) id{:\/\j wl"(ll't])af/;hy

Out of increasing the size of the TLB, adding more disk space, and adding more memory, which one
would lead to the largest performance increase and why?

Mo wembdny SR > disic

(/\ Shorel fle. GpreL olyesin

ang ARk 15 Mot
e)(fmﬁ\& Yhan 9&\'\3 to L[,gch el

frem
DAM (ouchess cslc
TL\'} (_Cld""»g l

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

2.4 Virtual Memory

vmstat is a Linux performance debugging tool that provides information about virtual memory on
your system. When you run it, the output looks like this:

$ vmstat 1

procs ——-----—--- Memory-—----—--- ——-= swap-- —-—---— io---- -system-- --——--- cpu-----
r b swpd free buff cache si so bi bo in cs us sy id wa st
1 0 0 174184 1007372 96316 49 642 3095 678 123 128 0 199 0 O
0 0 0 174240 1007372 96316 0 0 0 0O 48 8 0 0100 O O
0 0 0 174240 1007372 96316 0 0 0 0 33 75 0 0100 O O
0 0 0 174240 1007372 96316 0 0 0 0 32 73 0 0100 0 O

The 1 means “recompute the stats every 1 second and print them out”. The first line contains the
average values since boot time, while the second line contains the averages of the last second (current
averages). Here’s a reference for what each one of the columns means.

Procs
r: The number of runnable processes (running or waiting for run time).
b: The number of processes in uninterruptible sleep.

Memory
swpd: the amount of virtual memory used.
free: the amount of idle memory.
buff: the amount of memory used as buffers.
cache: the amount of memory used as cache.
inact: the amount of inactive memory. (-a option)
active: the amount of active memory. (-a option)

Swap
si: Amount of memory swapped in from disk (/s).
so: Amount of memory swapped to disk (/s).

I0
bi: Blocks received from a block device (blocks/s).
bo: Blocks sent to a block device (blocks/s).
System
in: The number of interrupts per second, including the clock.
cs: The number of context switches per second.
CPU

These are percentages of total CPU time.

us: Time spent running non-kernel code. (user time, including nice time)
sy: Time spent running kernel code. (system time)

id: Time spent idle. Prior to Linux 2.5.41, this includes I0-wait time.
wa: Time spent waiting for IO. Prior to Linux 2.5.41, included in idle.
st: Time stolen from a virtual machine. Prior to Linux 2.6.11, unknown.

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

Take a look at these 3 programs (A, B, C).

char *buffer[4 * (1L << 20)];

int A(int in) {
// "in" is a file descriptor for a file on disk
while (read(in, buffer, sizeof (buffer)) > 0);

}

int BO {
size_t size = 5 * (1L << 30);
int *x = malloc(size);
memset (x, 0xCC, size);

}

sem_t sema;
pthread_t thread;
void *foo() { while (1) sem_wait(&sema); }
int CO {
pthread_create(&thread, NULL, foo, NULL);
while (1) sem_post(&sema);
}

I ran these 3 programs one at a time, but in a random order. What order did I run them in? Can you
tell where (in the vmstat output) one program stopped and another started? Explain.

procs memory - —--swap-- —-—-- io---- -system—- ------ cpu-—---

r b swpd free buff cache si so bi bo in c¢s us sy id wa st

0 0 684688 25216 1822136 60860 75 748 3645 779 146 296 1 198 0 O

1 0 684688 25268 1822136 60868 0 0 0 0 18150 735898 6 44 51 0 O
1 0 684688 25268 1822136 60868 0 0 0 0 61864 1270088 6 77 17 0 O
1 0 684688 25268 1822136 60868 0 0 0 0 59497 1102825 8 71 21 0 O
1 0 684688 25268 1822136 60868 0 0 0 0 94619 766431 11 79 10 0 ©
0 O 684688 25612 1822136 60868 0 0 0 0 13605 237430 2 138 0 0
0 O 684688 25612 1822136 60868 0 0 0 0 61 115 0 1100 0O O

3 0 694520 18544 3212 45040 64 11036 264 11144 2647 2339 55143 0 O

4 1 1285828 20560 128 580 88 592440 14248 592440 18289 2171 3 68 36 4 O
3 0 1866176 21492 128 2132 0 578404 8972 578404 47646 1691 2 70 28 1 O
3 0 2350636 17820 136 2640 0 487732 11708 487788 17404 1881 1 58 39 1 0
2 0 2771016 22168 544 4360 2072 417272 15372 417272 17460 2192 2 57 39 3 0
0 0 697036 1922160 560 9712 1516 418224 16508 418228 47747 2616 0 64 30 6 O
0 0 697032 1921696 564 10096 28 0 288 0O 77 148 0 0 100 O O

1 0 696980 878128 1037720 11272 412 0 1038840 0 11128 14854 1 25 54 21 O
1 0 696980 21732 1895476 9348 0 0 1286460 0 13610 18224 0 31 46 22 0
0 2 696980 20992 1896496 9072 0 0 1297536 20 13745 19164 0 36 43 21 1
1 1 696980 20228 1897784 8648 0 0 1283324 32 13659 18931 0 36 41 23 0
1 1 696960 21048 1897404 8716 48 0 1215152 0 12601 17672 0 34 45 21 0
0 0 696952 23048 1899112 9004 8 0 470112 0 5100 7073 0 1381 6 0

0 0 696952 23048 1899112 9004 0 0 0 0O 45 89 0 0100 O O

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

If you have extra available physical memory, Linux will use it to cache files on disk for performance
benefits. This disk cache may also include parts of the swapfile. Why would caching the swapfile be
better than paging-in those pages immediately?

If T remove the line “memset(x, 0xCC, size);” from program B, I notice that the vmmstat output does
not have a spike in swap (si and so) nor in io (bi and bo). My system doesn’t have enough physical
memory for a 5GB array. Yet, the array is not swapped out to disk. Where does the array go? Why
did the memset make a difference?

Program B has a 5GB array, but the whole thing just contains 0xCCCCCCCC. Based on this observation,
can you think of a way to reduce program B’s memory footprint without changing any of program B’s
code? (What can the kernel do to save memory?)

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

2.5 Page Allocation

Suppose that you have a system with 8-bit virtual memory addresses, 8 pages of virtual memory, and 4
pages of physical memory.

How large is each page? Assume memory is byte addressed.

Suppose that a program has the following memory allocation and page table.

Memory Segment | Virtual Page Number | Physical Page Number
N/A 000 NULL
Code Segment 001 10
Heap 010 11
N/A 011 NULL
N/A 100 NULL
N/A 101 NULL
N/A 110 NULL
Stack 111 01

What will the page table look like if the program runs the following function? Page out the least recently
used page of memory if a page needs to be allocated when physical memory is full. Assume that the
stack will never exceed one page of memory.

What happens when the system runs out of physical memory? What if the program tries to access
an address that isn’t in physical memory? Describe what happens in the user program, the operating
system, and the hardware in these situations.

#define PAGE_SIZE 1024; // replace with actual page size

void helper(void) {

char *args[5];

int 1i;

for (1 = 0; i < 5; i++) {

// Assume malloc allocates an entire page every time
args[i] = (char*) malloc(PAGE_SIZE);

}

printf ("%s", args[0]);

}

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

2.6 Address Translation

Consider a machine with a physical memory of 8 GB, a page size of 8 KB, and a page table entry size
of 4 bytes. How many levels of page tables would be required to map a 46-bit virtual address space if
every page table fits into a single page?

et W el

List the fields of a Page Table Entry (PTE) in your scheme.

loshws: PPN, prrmgsin, Mh’y

Without a cache or TLB, how many memory operations are required to read or write a single 32-bit
word?

2 loakups, | achal mem op :>[7l

With a TLB, how many memory operations can this be reduced to? Best-case scenario? Worst-case

[TLR W, [achwal wenn = 2L
| TCR wiss, 2 lootups, | mem op ¢

The pagemap is moved to main memory and accessed via a TLB. Each main memory access takes
50 ns and each TLB access takes 10 ns. Each virtual memory access involves:
~——=Tmapping VPN to PPN using TLB (10 ns)

- if TLB miss: mapping VPN to PPN using page map in main memory (50 ns)

- accessing main memory at appropriate physical address (50 ns)

Assuming no page faults (i.e. all virtual memory is resident) what TLB hit rate is required for an
average virtual memory access time of 61ns.

10

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

n A\ o [\
6/ s = (Ons +50ns JF MK SORS)
lns = mR(Sons) MR= 1/S0

(MR =%%)

Assuming a TLB hit rate of .50, how does tmﬁ—&ﬁo/wcess tim% this scenario
compare to no TLB?
AMAT v/ TLR = (Onst Sons)+ 0.5 (S0ns)

= g g_}” J (00\0"‘!’ dm‘&

AMABTW TR = SOpr + SDns

t

i\

[00ns i
Vl(&+ AM/'F‘){;/WMD\ Sthee
No Hl'/' fﬁf/‘fs

11

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

2.7 Inverted Page Tables

Why IPTs? Consider the following case:

- 64-bit virtual address space

- 4 KB page size

- 512 MB physical memory

How much space (memory) needed for a single level page table? Hint: how many entries are there?
1 per virtual page. What is the size of a page table entry? access control bits + physical page #.

How about multi level page tables? Do they serve us any better here?
What is the number of levels needed to ensure that any page table requires only a single page (4
KB)?

Linear Inverted Page Table

What is the size of of the hashtable? What is the runtime of finding a particular entry?
Assume the following;:

- 16 bits for process ID

- 52 bit virtual page number (same as calculated above)

- 12 bits of access information

Hashed Inverted Page Table

What is the size of of the hashtable? What is the runtime of finding a particular entry?
Assume the following;:

- 16 bits for process ID

- 52 bit virtual page number (same as calculated above)

- 12 bits of access information

12

CS 162 Summer 2019 Section 12: Cache, Clock Algorithm, and Demand Paging

13

