Section 11

Wednesday, July 31,2019 2:05 PM

Section 11: FFS, Virtual Memory

CS162
July 31, 2019

Contents
1 Vocabulary

2 FFS Problems
2.1 File properties e
2.2 Lookup e
2.3 File Expansion e

3 Virtual Memory Problems
3.1 Conceptual Questions
3.2 Address Translation e

CS 162 Summer 2019 Section 11: FFS, Virtual Memory

1 Vocabulary

e Unix File System (Fast File System) - The Unix File System is a file system used by many
Unix and Unix-like operating systems. Many modern operating systems use file systems that are
based off of the Unix File System.

inode - An inode is the data structure that describes the metadata of a file or directory. Each
inode contains several metadata fields, including the owner, file size, modification time, file mode,
and reference count. Each inode also contains several data block pointers, which help the file
system locate the file’s data blocks.

Each inode typically has 12 direct block pointers, 1 singly indirect block pointer, 1 doubly indirect
block pointer, and [l triply indirect block pointer. Every direct block pointer directly points to a
data block. The sipgly indirect block pointer points to a block of pointers, each of which points
to a data block. e doubly indirect block pointer contains another level of indirection, and the

triply indirect blogk pointer contains yet another level of indirection. \’\ d&
3k o
Ak da :
o Mo ke —
\[Tri Double
direct Indirect Indirect Data

Inode Blocks Blocks Blocks Blocks

Inode Array

L

File Metadata

Direct Pointer

Direct Pointer
Indirect Pointer
Dbl. Indirect Ptr.
.| Tripl. Indirect Ptr.

| Ak Seeor

e Virtual Memory - Virtual Memory is a memory management technique in which every process
operates in its own address space, under the assumption that it has the entire address space to
itself. A virtual address requires translation into a physical address to actually access the system’s
memory.

O-000-0-0-00-00

LT

e Memory Management Unit - The memory management unit (MMU) is responsible for trans-
lating a process’ virtual addresses into the corresponding physical address for accessing physical
memory. It does all the calculation associating with mapping virtual address to physical addresses,
and then populates the address translation structures.

CS 162 Summer 2019 Section 11: FFS, Virtual Memory

e Address Translation Structures - There are two kinds you learned about in lecture: segmen-
tation and page tables. Segments are linearly addressed chunks of memory that typically contain
logically-related information, such as program code, data, stack of a single process. They are of
the form (s,i) where memory addresses must be within an offset of i from base segment s. A page
table is the data structure used by a virtual memory system in a computer operating system to
store the mapping between virtual addresses and physical addresses.

Inverted Page Table - The inverted page table scheme uses a page table that contains an entry
for each phiscial frame, not for each logical page. This ensures that the table occupies a fixed
fraction of memory. The size is proportional to physical memory, not the virtual address space.
The inverted page table is a global structure — there is only one in the entire system. It stores
reverse mappings for all processes. Each entry in the inverted table contains has a tag containing
the task id and the virtual address for each page. These mappings are usually stored in associative
memory (remember fully associative caches from 61C?). Associatively addressed memory compares
input search data (tag) against a table of stored data, and returns the address of matching data.
They can also use actual hash maps.

Translation Lookaside Buffer (TLB) - A translation lookaside buffer (TLB) is a cache that
memory management hardware uses to improve virtual address translation speed. It stores virtual
address to physical address mappings, so that the MMU can store recently used address mappings
instead of having to retrieve them mutliple times through page table accesses.

2 FFS Problems

2.1 File properties
Consider the following inode_disk struct, which is used on a disk with a 512 byte block size. Uk(y 2_ «@ (“Q

/* Definition of block_sector_t */ dJV(

typedef uint32_t block_sector_t;
/* Contents of on-disk inode. Must be exactly 512 bytes long. */
struct inode_disk -

{

off_t length; /* File size in bytes. */

block_sector_t direct[12]; /* 12 direct pointers */ ﬁ%

block_sector_t indirect; 6\2 l a singly indirect pointer * me r‘buf“

uint32_t unused[114] ‘_' /* Not used. */ A7 2 9965/1{
};

Why isn’t the file name stored inside the inode_disk struct?

hotd mgdle Ay entnes N

=

W hﬁt is the maximum file size %Lpp}fted by thlb-arﬁode design?

A+ g)sin= [xf+ql

How would you design the in-memory representation of the indirect block? (e.g. the disk sector that
corresponds to an inode’s indirect member) _—

CS 162 Summer 2019 Section 11: FFS, Virtual Memory

(I A \ L C1o%l
blo =Xy =C ["=>J

2.2 Lookup [9_(_.)0 ,—Q

Using the inode_disk defined above, how many disk sectors would you need to read to get the 1000 C]'},
byte of the file? —_—

[ode_dRF - datox Sed®

secbrs read| 1716006

=20

Using the inode_disk defined above, how many disk sectors would you need to read to get the 10,000 g "L —
byte of the file? —
o . bve C; 1{'04 . 2 (7{ 0\4_“ = i
\. wode_d8K A . mdi ° QL 5. YooV Q0 (1>%

2.3 File Expansion

— [} - ~ f / a Ol
- (?]’ 5 Seq 'S
Lets say we had a file that was already 16240 bytes long, which equates to 20 disk sectors of data.

Explain or draw the current state of the file. How many disk sectors have been allocated to store this
file?

0 dodu sefors | gelh oy Mool Al Usacl | diect
A Selhrs

If we wanted to write 1024 ?&t‘ee’bppended to the end of this file, how would we have to modify our

state above? I ~ " !
— [] allocHC R sechr,
cg] [re? uDdale. RIS

[e ~ I 4
3 Virtual %/?gnhmy_Bpergleanj Vfdak' l%qﬂ‘

3.1 Conceptual Questions

S
<

If the physical memory size (in bytes) is ToublLd how does the number of bits in each entry of the page

table change? P AD PR Im-’— /dV\({Q'" , DPN i lorf“ |
fer | =
cﬁc[/\ GV)'}'y , lgl'}' /mn(,er wet

©

If the physical memory size (in bytes) is doubled, how does the number of entries in the page map PN

horR - [P TR

uPN PO

|

4 2.
P Vi

CS 162 Summer 2019 Section 11: FFS, Virtual Memory

no changt o VADDR. = Same
If the virtual memory size (in bytes) is doubled, how does the number of bigs i 1r1 each entry of the
page table change? \}AQD R : \ W&’(lﬂ({_ \) PN \)PN

If the virtual memory size (in bytes) is doubled, how does the number of entries in the page map
change?

fia a5 pun Y zﬁ’
Z]

If the page size (in bytes) is doubled, how does the number of bits in each entry of the page table , P

change? A‘DDQZ gaW\L W{A ‘fymu NDLI} . }:’T
Y BV
| biv legs P Harsl g

If the page size (in bytes) is doubled, how does the number of entries in the page map change?

half

The following table shows the first 8 entries in the page map. Recall that the valid bit is 1 if the
page is resident in physical memory and 0 if the page is on disk or hasn’t been allocated.

Valid Bit | Physical Page
O lo 7
\ 1 9
210 B
kN €D) 2)
T 5
0 5
0 4
0
\ ol NAR\RY N
PO (VS

If there are 1024 bytes per page, what is the physical address corresponding to the hexadecimal

virtual address OxF747
Ox B7FY

00
Of,%\,w“ \P()Olf’ = a0 11 oll10108

=3 - opo

vepiLupwe | PO

VPN
CS 162 Summer 2019 ‘/f\' Section 11: ﬂ[@Mrtual Memor;
J ;

3.2 Address Translation

Consider a machine with a physical memory of 8 GB, a page size of 8 KB, and a page table entry size
of 4 bytes. How many levels of page tables would be required to map a 46-bit virtual address space if
every page table fits into a single page?

2

—’5—; _ «;H ’y/ Paqe J_Pat}e ‘J’kbh.—

.-)\‘ ’2:\.
i 1 \\ \3 C v |l— > L
AP RN DI AN

List the fields of a Page Table Entry (PTE) in your scheme.

OPN) petudlate

Without a cache or TLB, how many memory operations are required to read or write a single 32-bit
word?

With a TLB, how many memory operations can this be reduced to? Best-case scenario? Worst-case
scenario?

