162 Dis 6 Notes

Thursday, February 28, 2019 5:34 PM

Section 6: Deadlock, Scheduling, and Fairness

March 1, 2019

Contents
1 Warmup 2
2 Vocabulary 2
3 Problems 3
3.1 Locking Up the Floopies« . . 3
3.2 Banker’s Algorithm 5
3.3 Scheduling L e 6
3.4 Simple Priority Scheduler 7
3.4.1 Fairness e 7
3.4.2 Better than Priority Scheduler? 8
3.4.3 Tradeoff 8
3.5 Totally Fair Scheduler 8
. A 3.5.1 Per thread quanta L 8
O Q\"U\\\Q 3.5.2 struct thread L 9
3.5.3 thread tick e 9
0 m‘th'S 3.5.4 timer interrupto 10
V,X /r 3.5.5 thread create 11
"~ 5. nalysis e e e
Sy at 3.5.6 Anal 12
Q Wonhle
\ ko B3 C "%
—

L2 3 495 cCcF g9 Ngwff“”.\\/
ccrs [I A\Yg\% el e | c lc
e a (A Bl [c[c]a] o ¢ [AdB5 L5

5 : ‘;LZ\ 2 U+
G) Nok frredk fo B . |
Can schedule same Yhead ago (Mo Hie quonts vequit menh)

CS 162 Spring 2019 Section 6: Deadlock, Scheduling, and Fairness

1

Warmup

Which of the following are true about Round Robin Scheduling? o La

1.
2.

The average wait time is less that that of FCFS for the same workload. F: e See

Is supported by thread_tick in Pintos. _r _H*, YV\rM (b

. It requires pre-emption to maintain uniform quanta. _r & 9}0? O) b o L °P< fM‘,W

. If quanta is constantly updated to become the # of cpu ticks smce boot, Round Robin becomes

FIFO. T & Lhme qwh{n hevey QXP'W

. Ifall threads in the system have the same priority, Priority Schedulers must behave like round

ohin. Z ¢ Goe (Above

. Cache performance is likely to improve relative to FCFS. F (:Q V)k,)ql' 5.(/\”. klﬂl’hﬂ:)00'()

. If no new threads are entering the system all threads will get a chance to run in the cpu every f

QUANTA*SECONDS_PER_TICK*NUMTHREADS seconds. (Assuming QUANTA is in ticks). F

. This is the default scheduler in Pintos T

. Tt is the fairest scheduler F O{QEV\Q ‘Faw‘/\es < h 0d ‘(\;‘/ C,acl’('

| amdng every oneg bad _‘Q,/ rvyﬂ'wm
_%:\f : vev?b:fm w:Pof jm" 3€+ V"‘°S+

Scheduler - The process scheduler is a part of the operating system that demdes which process
runs at a certain point in time. It usually has the ability to pause a running process, move it to

the back of the running queue and start a new process; RE) ’] ’
FIFO Scheduling - First-In-First-Out (aka First-Come-First-Serve) scheduling runs jobs as they

arrive. Turnaround time can degrade if short jobs get stuck behind long ones (convoy effect);

Vocabulary

Round-Robin Scheduling - Round-Robin scheduling runs each job in fixed-length time slices
(quanta). The scheduler preempts a job that exceeds its quantum and moves on, cycling through
the jobs. It avoids starvation and is good for short jobs, but context switching overhead can become
important depending on quanta length;

Priority Scheduling - Priority scheduling runs the highest priority job, based on some assigned
priorities. Starvation of low-priority jobs and priority inversion (a higher priority task waiting for
a lower priority one, usually for a lock) are issues. Priorities can be static or dynamic, and if
dynamic can change based on heuristics or locking-related donations;

SRTF Scheduling - Shortest Remaining Time First scheduling runs the job with the least re-
maining amount of computation time and is preemptive. It has the optimally shortest average
turnaround time. In practice remaining computation time can’t be predicted, so SRTF is often
used as a post-facto benchmark for other algorithms; D 1\/)’] O ,

Multi-Level Feedback Queue Scheduling - MLFQS uses multiple queues with priorities, drop-
ping CPU-bound jobs that consume their entire quanta into lower-priority queues;

CS 162 Spring 2019 Section 6: Deadlock, Scheduling, and Fairness

3 Problems
3.1 Locking Up the Floopies

In section 5, you may remember encountering race conditions inside of the Central Galactic Floopy
Corporation’s currency exchange server, which runs on top of pthreads. We said that we could make the
transactions run correctly by making the balance increment/decrement atomic. The Central Galactic
Floopy Corporation hires a consultant named Morty who suggests making the increment/decrement pair
appear atomic by adding a lock to each account, and acquiring the locks when we run the transaction.

typedef struct account_t {
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZED;
int balance;
long uuid;

};

void transfer(account_t *donor, account_t *recipient, float amount) {
// lock accounts so we can make the transfer safely
pthread_mutex_lock(&donor->lock) ;
pthread_mutex_lock(&recipient->lock) ;

// check balances and make transfer if possible
if (donor->balance < amount) {
printf ("Insufficient funds.\n");

} else {
donor->balance -= amount;
recipient->balance += amount;
}

// unlock accounts
pthread_mutex_unlock(&recipient->lock) ;
pthread_mutex_unlock(&donor->lock) ;

If we use the locking code given above, will the code run correctly? Has Morty introduced a new bug
into our code? Can you give an example of where this code would fail?

Devdlode - W example lask weell :

1 A%

");\\ =2 R S Vv olovor s
> buih_ acqu o B bk

| gk A bk, > Tk pan o) (2 et onh)

2B o veiptht
2 ctudl fvever

CS 162 Spring 2019 Section 6: Deadlock, Scheduling, and Fairness

Can you modify the code above to resolve this bug?

typedef struct account_t {
pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZED;
int balance;
long uuid;

};

void transfer(account_t *donor, account_t *recipient, float amount) {
// lock accounts so we can make the transfer safely) g

pthread_mutex_lock(&donor->lock) ;

pthread_mutex_lock(&recipient->lock); & 0\\”(/1 \1 S q&”

} else { + ’RYS’J’

o or ecx(irospine oo Gl 0 Jev
’ o ol ehla O
— 90 o)
o prefertnCt

// check balances and make transfer if possible ’, lO
if (donor->balance < amount) { QLCDVV‘
printf ("Insufficient funds.\n"); C (V\
} else { ‘ (()\ . -
donor->balance —-= amount;

recipient->balance += amount;

}

// unlock accounts
pthread_mutex_unlock(&recipient->lock) ;
pthread_mutex_unlock(&donor->lock) ;

CS 162 Spring 2019 Section 6: Deadlock, Scheduling, and Fairness

. l olc
Cowred ! dduil nexy peele | eyplanaho
— Wi l/(OKO \41'\]Q ve
Suppose we have the following resources: A, B, C and threads T1, T2, T3 and T4. The total number of
each resource as well as the current/max allocations for each thread are as follows:

P‘\ © Total u < '],(Q)V\QV\/DJYW
%Y\YR\(S' $ Wt o " vw\’\ AEIR /%1(:3\ ;ialt shide # wdl;dé
\ i why il o Wamng

- B Sumes - Yeeg MRX resources
(& ra
;Wg\‘w : e, priampT

3.2 Banker’s Algorithm

B

b\sdb QU\(p Current
o

'—‘OJMO}
C}Jb—l@w@;%
"

NN)
ol ol ol x| >

| ol o|lwl)

WO N N

of vesou £ S
LN
‘&9“ \I\Q’Is the system in a safe state? If so, show a non-blocking sequence of thread executions. / N QQ(J 14| y gi
1 T30 |
O | Avabbe © 7-0-2-%-1=1 -22-3=14-2-M4-1=|| wao03

‘ \Run : T2 = Available = |+2=Y |+0=1 [+Y=5
A jRV\hi‘_T’l'—’) Auallpbler Uro=U 1493 S#2=% -
2 Ron-TU = Avoiloble . Ur=56 243= (L 24§ _1 vin
Repeat the previous question if the total number of C instances is 8 instead of 9.

O] Awilable: | [g-2-{-d4-1-0
= o Yheed capn Compele = NOT SAFE

/h J
\Mloct? mayhe , 1Meyee Mot

7\ X w
L o Hhread gives up red
necessorly 1eud +s dentlock.

CS 162 Spring 2019

Section 6: Deadlock, Scheduling, and Fairness

3.3 Scheduling

Consider the following single-threaded processes and their arrival times, CPU bursts, and priority

Porie

\

A
®
v
C

Process Arrival Time CPU Burst Priority

A 1 5 1

B 3 3 3

C 5 2 2

D 4 4 4
Please note: A2V L

e Priority scheduler is preemptive.

S —

e Newly arrived processes are scheduled last for RR. When the RR quanta expires, the currently

running thread is added at the end of to the ready list before any newly arriving threads.

e Break ties via priority in Shortest Remaining Time First (SRTF).

e If a process arrives at time x, they are ready to run at the beginning of time x.

e Ignore context switching overhead.

e The quanta for RR is 1 unit of time.

e Total turnaround time is the time a process takes to complete after it arrives.

Fill in the following scheduling table and calculate the total turnaround time for each scheduling

c

ot b-cc’inmhy

peorithn Qe e <y \YF B=A BE @C DD
Time FIFO RR SRTF Priority
1 A A n A |5 A
2 A Al A A | U A
3 A INEL B |33 B
4 A 2| ADB b 229 D
5 B Alveca | 212142 D
6 @ Digcanr | C |24l ©
7 5 gl | C [34\] D
8 B C|lAvec | A |2 Y 2
9 D pivec A |24 13
10 D DIBD | A[)Y C
11 D) | L0 D Y C
12 9 C |V D 3 A
13 C P |P D | 2 A
14 C \) D { A
Tme 20 X 27 2

%+Z+q*'% o+q+G40N 104322341 JY+F+F+ Y

{ (
b-t a3 o

1s-$

,Q\,\‘\g\,\kw\’j - arrval hine

CS 162 Spring 2019 Section 6: Deadlock, Scheduling, and Fairness

3.4 Simple Priority Scheduler

We are going to implement a new scheduler in Pintos we will call it SPS. We will just split threads into
two priorities "high” and ”low”. High priority threads should always be scheduled before low priority
threads. Turns out we can do this without expensive list operations.

For this question make the following assumptions:

e Priority Scheduling is NOT implemented

e High priority threads will have priority 1

e Low priority threads will have priority 0

e The priorities are set correctly and will never be less than 0 or greater than 1

e The priority of the thread can be accessed in the field int priority in struct thread
e The scheduler treats the ready queue like a FIFO queue

e Dont worry about pre-emption.

Modify thread_unblock so SPS works correctly.
You are not allowed to use any non constant time list operations

void
thread_unblock (struct thread *t)
{
enum intr_level old_level;
ASSERT (is_thread (t));
old_level = intr_disable ();
ASSERT (t->status == THREAD_BLOCKED) ;

it push-ont LLready st , €= dom) ;

t->status = THREAD_READY;
intr_set_level (old_level);

3.4.1 Fairness

In order for this scheduler to be ”fair” briefly describe when you would make a thread high priority and
when you would make a thread low priority.

PV R ugs wp 61““”1"0\, PrifaF V,((ois
= I\Jrrfcrs smalley yrsts

. 7 all wal hme
Debwitn of fair -?MPEm’f e go st

CS 162 Spring 2019 Section 6: Deadlock, Scheduling, and Fairness

3.4.2 Better than Priority Scheduler?

If we let the user set the priorities of this scheduler with set_priority, why might this scheduler be
preferable to the normal pintos priority scheduler?

et 1¢ CASEr — o0 ek
ohill does o dewnt 3ob s o priocity ¢ chugluler
¢S Rne grain'’ Aduils Tt shill good

How can we trade off between the coarse granularity of SPS and the super fine granularity of normal
priority scheduling? (Assuming we still want this fast insert)

happy Medium Heiweer the o

3.4.3 Tradeoff -

3.5 Totally Fair Scheduler

You design a new scheduler, you call it TFS. The idea is relatively simple, in the begining, we have
three values BIG_QUANTA, MIN_LATENCY and MIN_QUANTA. We want to try and schedule all threads every
MIN_LATENCY ticks, so they can get atleast a little work done, but we also want to make sure they run
atleast MIN_QUANTA ticks. In addition to this we want to account for priorities. We want a threads
priority to be inversely proportial to its vruntime or the amount of ticks its spent in the CPU in the
last BIG_QUANTA ticks.

You may make the following assumptions in this problem:

e Priority scheduling in Pintos is functioning properly,
e Priority donation is not implemented.

e Alarm is not implemented.

e thread_set_priority is never called by the thread

e You may ignore the limited set of priorities enforced by pintos (priority values may span any float
value)

e For simplicity assume floating point operations work in the kernel

3.5.1 Per thread quanta

How long will a particular thread run? (use the threads priority value)

ék‘p - Set. éD’V\

CS 162 Spring 2019 Section 6: Deadlock, Scheduling, and Fairness

Cip rest, See sb’g@ ﬁ;sf

Below is the declaration of struct thread. What field(s) would we need to add to make TFS possible?
You may not need all the blanks.

3.5.2 struct thread

struct thread

{
/* Owned by thread.c. */
tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
float priority; /* Priority, as a float. */
struct list_elem allelem; /* List element for all threads list. */

/* Shared between thread.c and synch.c. */

struct list_elem elem; /* List element. */
#ifdef USERPROG

/* Owned by userprog/process.c. */

uint32_t *pagedir; /* Page directory. */
#endif

___________________________ /* What goes here? */

___________________________ /* What goes here? */
___________________________ /* What goes here? x*/

/* Owned by thread.c. */
unsigned magic; /* Detects stack overflow. */

};

3.5.3 thread tick
What is needed for thread_tick() for TFS to work properly? You may not need all the blanks.

void
thread_tick (void)
{

struct thread *t = thread_current ();

/* Update statistics. */
if (t == idle_thread)
idle_ticks++;
#ifdef USERPROG
else if (t->pagedir != NULL)
user_ticks++;
#endif
else
kernel_ticks++;

CS 162 Spring 2019 Section 6: Deadlock, Scheduling, and Fairness

/* Enforce preemption. */
if (++thread_ticks >= TIME_SLICE) { /* TIME_SLICE may need to be replaced with something else */
intr_yield_on_return Q) ;

3.5.4 timer interrupt
What is needed for timer_interrupt for TFS to function properly.

static void
timer_interrupt (struct intr_frame *args UNUSED)

{

ticks++;

10

CS 162 Spring 2019 Section 6: Deadlock, Scheduling, and Fairness

thread_tick ();
}

3.5.5 thread create
What is needed for thread_create() for TFS to work properly? You may not need all the blanks.

tid_t
thread_create (const char *name, int priority, thread_func *function, void *aux)

{
/* Body of thread_create omitted for brevity */

/* Add to run queue. */

thread_unblock (t);

if (priority > thread_get_priority ())
thread_yield QO;

return tid;

11

CS 162 Spring 2019 Section 6: Deadlock, Scheduling, and Fairness

3.5.6 Analysis

Explain the high level behavior of this scheduler; what exactly is it trying to do? How is it differen-
t/similar from/to the multilevel feedback scheduler from the project?

12

