162 Dis 2 Notes

Friday, February 1, 2019 '\TOV\ , lé)g\ g{D [CI

Section 2: Processes

February 1, 2019

Contents

1 Vocabulary 2

2 Warmup 3
2.1 Hello World e 3

3 Problems 3
3.1 Forks. o e e 3
3.2 Stack Allocation 4
3.3 Heap Allocation e 4
3.4 Slightly More Complex Heap Allocation 5
3.5 Simple Wait L e 6
3.6 Fork and File Descriptors 7
3.7 Exec e e 7
3.8 Exec+ Fork. o 8
3.9 Implementing fork() efficiently (Design) 8

CS 162 Spring 2019 Section 2: Processes

1 Vocabulary

process - a process is an instance of a computer program that is being executed. It consists of an
address space and one or more threads of control.

address space - The address space for a process is the set of memory addresses that it can use.
The address space for each process is private and cannot be accessed by other processes unless it
is shared.

stack - The stack is the memory set aside as scratch space for a thread of execution. When a
function is called, a block is reserved on the top of the stack for local variables and some book-
keeping data. When that function returns, the block becomes unused and can be used the next
time a function is called. The stack is always reserved in a LIFO (last in first out) order; the most
recently reserved block is always the next block to be freed.

heap - The heap is memory set aside for dynamic allocation. Unlike the stack, there’s no enforced
pattern to the allocation and deallocation of blocks from the heap; you can allocate a block at any
time and free it at any time.

fork - A C function that calls the fork syscall that creates a new process by duplicating the calling
process. The new process, referred to as the child, is an exact duplicate of the calling process
(except for a few details, read more in the man page). Both the newly created process and the
parent process return from the call to fork. On success, the PID of the child process is returned in
the parent, and 0 is returned in the child. On failure, -1 is returned in the parent, no child process
is created.

wait - A class of C functions that call syscalls that are used to wait for state changes in a child
of the calling process, and obtain information about the child whose state has changed. A state
change is considered to be: the child terminated; the child was stopped by a signal; or the child
was resumed by a signal.

exit code - The exit status or return code of a process is a 1 byte number passed from a child
process (or callee) to a parent process (or caller) when it has finished executing a specific procedure
or delegated task

exec - The exec() family of functions replaces the current process image with a new process image.
The initial argument for these functions is the name of a file that is to be executed.

CS 162 Spring 2019 Section 2:
vt | 7

\qo’l\bs

2 Warmup

2.1 Hello World
What can C print in the below code? Assume the child’s PID is 90210 ¢ l -
\
il pid

(Hint: There is more than one correct answer)

int main() { ‘

T s o
DIt} duldam 5 child Z,Pﬂfﬁlgj PN oN
Hello Wevid | Hello w;v ‘701!0\ Helle \/\JMM"I

ol t/ O U

3 Problems
3.1 Forks

How many new processes are created in the below program assuming calls to fork succeeds?

int main(void)
{
for (int i = 0; i < 3; i++) {
pid_t pid = fork();
}
}

¢ el ‘w\clu\o‘!\hﬂ 0571}101] P1lless

g Nok O & Same
. Do« pnuss thawh
@ ?ﬂ >@£O g "H‘HS No new
’\Drocegg created -
ge Swil agumnt

@{7@{@ﬁ '133' v oths oo

CS 162 Spring 2019 Section 2: Proces'sles
o) chid
. — ’_/j

3.2 Stack Allocation ’ clc \ g“}hﬁk

What can C print? Ma\le,
ﬁ“d,\ shuff =55

int main(void) W\\{ M Eiv_’&_:’_g/’— //
: int stuff = 5; c’)v\j

pid_t pid = fork();

printf ("The last digit of pi is %d\n", stuff);
if (pid == 0)
stuff = 6; \

The last digt of P 1S5
The last o'\\\ZH' o ¢l s §

(o Jut oy g ¥ for) ails)

3.3 Heap Allocation
What can C print? ,

int main(void) //_’—)
{

int* stuff = malloc(sizeof (int)*1); S'I‘,\'Ff-_-_ 5'7

xstuff = 5;

pid_t pid = fork(); IVOIP
printf("The last digit of pi is %d\n", *stuff);
if (pid == 0)

xstuff = 6 J
} i

S oS abole
—

CS 162 Spring 2019 Section 2: Processes

3.4 Slightly More Complex Heap Allocation
What does C print in this case ?

void printTenNumbers(int *arr)

{
int i;
printf("\n");
for(i=0; i<10; i++) {
printf ("%d",arr[il);
}
exit (0);
}

int main()

int *arr, i;
arr = (int *) malloc (sizeof(int));

arr[0] = 0;

for(i=1; i<10; i++) {
arr = (int *) realloc(arr, (i+1) * sizeof(int));
arr[i] = 1i;

if (i==7) { Clﬂ‘l{d’ e OW\ly l/lag < Q{Q&"/?//Zé

pid_t pid = fork();

if (pid == 0) { =
printTenNumbers(arr) ; SB "ﬁ(\

y = priks O-7 r 90{)726,;1%'//;

}

printTenNumbers(arr) ;

; R’\)arfl/l“' fnishes dpriks O —q

CS 162 Spring 2019 Section 2: Processes

3.5 Simple Wait
What can C print? Assume the child PID is 90210.

int main(void)

{

pid_t pid = fork();

int exit;

if (pid !'= 0) {

wait (&exit);

}

printf ("Hello World\n: %d\n", pid);
}

Heub World O of Holls (ovbh —1
Hello World 400 of + s :

What is the equivalent program using the waitpid function instead of wait?

\q:\)\ata wWalt With Waﬁ-pid(—ljﬂexf{

0)

CS 162 Spring 2019 Section 2: Processes

3.6 Fork and File Descriptors

{

What will be stored in the file ”output.txt” ? ‘ ; I = (
int main(void) §0 q \‘\/€ V\
_ 9 %Y

int fd;

%&1‘ put. Tt

fd = open("output.txt", O_CREAT|O_TRUNC|O_WRONLY, 0666) ;

if (Mfork()) { Vr\- _].“b,
write(fd, "hello ", 6); r\))ft H e.
0

exit (0);
} else {
int status; 3
wait (&status); S’
write(fd, "world\n", 6); -
} \(S 7
} V\V\Q‘\ \
et
r
Het -
OWw, Confuing
\ l
L\e“b b\/o\/ld \n
3.7 Exec
What will C print?
int main(void)
{
charx* argv = (char**) malloc(3*sizeof (charx)); O
argv[0] = "/bin/ls";
argv[1] = "."; l
argv[2] = NULL;
for (int i = 0; i < 10; i++) { D\
printf ("%d\n", 1i);
if (i == 3) 2 Y
execv("/bin/ls", argv); . ? (QSS'
, } = eXel @w\‘HN-S f

onf- 5 |$ Comond A7
7 —\ukp,s SVer

CS 162 Spring 2019 Section 2: Processes

3.8 Exec + Fork

How would I modify the above program using fork so it both prints the output of 1s and all the numbers
from 0 to 9 (order does not matter)? You may not remove or reorder lines from the original program;
only add statements (and use fork!).

T > privs 5-q & s outpuf sowerbe

3.9 Implementing fork() efficiently (Design)

Remember fork() makes the child process’s address space exactly the same as its parent’s. If you were
designing an OS, list some steps you would take to make this address space copy more efficient ?

COW N -Wiike
OY\ O_,‘) 0(0{0
Yy oY
_ rfods Can 2 M
5 4k \AS(AUL[9 ued Gttt sF 2Keuy rew

er £owe ik o
. T 0/1\7/')'1&/ vershs (v

N\

eudh ovil.))

h =7 pontisg 1o epy ol 0ver

