112 Dis 7

Friday, March 8, 2019 3:03 PM

Section 8: Banker’s Algorithm and Address Translation

March 8, 2019

Contents
1 Vocabulary

2 Problems
2.1 Conceptual Questions e
2.2 Banker’s Algorithm
2.3 Page Allocation L
2.4 Address Translation e
2.5 Inverted Page Tables

CS 162 Spring 2019 Section 8: Banker’s Algorithm and Address Translation

1 Vocabulary

Deadlock Situation in which two computer programs sharing the same resource are effectively
ther from accessing the resource, resulting in both programs ceasing to function.

Banker’s Algorithm j A resource allocation and deadlock avoidance algorithm that tests for
Si ifig the allocation for predetermined maximum possible amounts of all resources,
before deciding whether allocation should be allowed to continue.

Virtual Memory - Virtual Memory is a memory management technique in which every process
operates in its own address space, under the assumption that it has the entire address space to
itself. A virtual address requires translation into a physical address to actually access the system’s
memory.

Memory Management Unit - The memory management unit (MMU) is responsible for trans-
lating a process’ virtual addresses into the corresponding physical address for accessing physical
memory. It does all the calculation associating with mapping virtual address to physical addresses,
and then populates the address translation structures.

Address Translation Structures - There are two kinds you learned about in lecture: segmen-
tation and page tables. Segments are linearly addressed chunks of memory that typically contain
logically-related information, such as program code, data, stack of a single process. They are of
the form (s,i) where memory addresses must be within an offset of i from base segment s. A page
table is the data structure used by a virtual memory system in a computer operating system to
store the mapping between virtual addresses and physical addresses. Virtual addresses are used
by the accessing process, while physical addresses are used by the hardware or more specifically to
the RAM.

Inverted Page Table - The inverted page table scheme uses a page table that contains an entry
for each phiscial frame, not for each logical page. This ensures that the table occupies a fixed
fraction of memory. The size is proportional to physical memory, not the virtual address space.
The inverted page table is a global structure — there is only one in the entire system. It stores
reverse mappings for all processes. Each entry in the inverted table contains has a tag containing
the task id and the virtual address for each page. These mappings are usually stored in associative
memory (remember fully associative caches from 61C7). Associatively addressed memory compares
input search data (tag) against a table of stored data, and returns the address of matching data.
They can also use actual hash maps.

translation lookaside buffer (TLB) - A translation lookaside buffer (TLB) is a cache that
memory management hardware uses to improve virtual address translation speed. It stores virtual
address to physical address mappings, so that the MMU can store recently used address mappings
instead of having to retrieve them mutliple times through page table accesses.

i Vihel pgdr spde o P
== (@
(2 — e
VPN | oy O

Section 8: Banker’s Algo\dtﬂll\!m ess Translap'o%

CSt62-Spring 2019

| N:

2 Pr — | T T~ :]
— - —

2.1 Conceptual Questions J
ms the number of bits in each entry of the page

If the physical memory size (in bytes) is double
table change?

O%_)Q% 3 evty e,n{»y hou | Moe Lo - N 0Yetx ”
‘ __X,,X 34 = ol Jog 2T =D
If the physical memory size (in bytes) is doubled, how does the number of entries in the page map

change? \ Y\é(
n
Stme.

If the virtual memory size (in bytes) is doubled, how does the number of bits in each entry of the
page table change?

S ame

If the virtual memory size (in bytes) is doubled, how does the number of entries in the page map
change?

do\/\lol.z_ g :H_ PT CV\M{S - H Vbl PW‘,&S

If the page size (in bytes) is doubled, how does the number of bits in each entry of the page table
change?

Jawas by |

—

If the page size (in bytes) is doubled, how does the number of entries in the page map change?

halwes

The following table shows the first 8 entries in the page map. Recall that the valid bit is 1 if the
page is resident in physical memory and 0 if the page is on disk or hasn’t been allocated.

CS 162 Spring 2019

Section 8: Banker’s Algorithm and Address Translation

Valid Bit | Physical Page
0 7
1 9
0 3
1 2
1 5
0 5
0 4
1 1

If there are 1024 bytes per page, what is the physical address corresponding to the hexadecimal
virtual address 0xF747

CS 162 Spring 2019

Section 8: Banker’s Algorithm and Address Translation

2.2 Banker’s Algorithm

Suppose we have the following resources: A, B, C and threads T1, T2, T3 and T4. The total number of
each resource as well as the current/max allocations for each thread are as follows:

Total
A[B[C
¥y Neuks
&
Cuf"rent&_$ Max 6" & C‘\
TR|A[B[C|[A][B][C
TL [[0 |22 433 L[)—é
T2 [[2 21369 ,L 4
TS (304315 oL |
T4 [[1[3]1[3[3]4 - 2le | 3

1

Is the system in a safe state? If so, show a non-blocking sequence of thread executions.

7
Y
v’

§aFL S’bk

TR Tl =>T4 - TX

Repeat the previous question if the total number of C instances is 8 instead of 9.

unsafe

CS 162 Spring 2019 Section 8: Banker’s Algorithm and Address Translation

2.3 Page Allocation

Suppose that you have a system with 8-bit virtual memory addresses, 8 pages of virtual memory, and 4
pages of physical memory.

How large is each page? Assume memory is byte addressed.

Suppose that a program has the following memory allocation and page table.

Memory Segment | Virtual Page Number | Physical Page Number
N/A 000 NULL
Code Segment 001 10
Heap 010 11
N/A 011 NULL
N/A 100 NULL
N/A 101 NULL
N/A 110 NULL
Stack 111 01

What will the page table look like if the program runs the following function? Page out the least recently
used page of memory if a page needs to be allocated when physical memory is full. Assume that the
stack will never exceed one page of memory.

What happens when the system runs out of physical memory? What if the program tries to access
an address that isn’t in physical memory? Describe what happens in the user program, the operating
system, and the hardware in these situations.

#define PAGE_SIZE 1024; // replace with actual page size

void helper(void) {

char *args[5];

int i;

for (i = 0; i < 5; i++) {
// Assume malloc allocates an entire page every time
args[i] = (char*) malloc(PAGE_SIZE);

}

printf("%s", args[0]);

CS 162 Spring 2019 Section 8: Banker’s Algorithm and Address Translation

36 _o3%3
2.4 Address Translation }'9 ’7\ ——Z B Q\ZB I‘LB PcfPTf;

Consider a machine with a physical memory of 8 GB, a page size of 8 KB, and a page table entry size
of 4 bytes How many levels of page tables would be required to map a 46-bit v1rﬁua1 address space T

every page tab'e_ﬁta—u}tiwlglage” 2 UQB /2_ B {2_ Da(/e S

23R [ate - 2".3TE [/ peye D
el 1= jy, o

List the fields of a Page Table Entry (PTE) in your scheme.
PP/\/ P Stuhns ks, permgs g \ PN/‘/@
>
Without a cache or TLB, how manv mem Ty operamons are required to W writedingle
word?
N ;wm | gk PHEF o
= LE{ U

scer};\‘friitg]? a TLB, how many memory operations can this be reduced to? Best-case sq’n’aﬂ'rr’ar A7t case ’ Q
TL® ks [TUB T [daw = 7
VPN | I Ve /

TL@ MRS : /7(@ -I'l/:_ < '

The pagemap is moved to main memory and accessed via a TLB. Each main memory access takes
50 ns and each TLB access takes 10 ns. Each virtual memory access involves:

- mapping VPN to PPN using TLB (10 ns)

- if TLB miss: mapping VPN to PPN using page map in main memory (50 ns)

- accessing main memory at appropriate physical address (50 ns)

Assuming no page faults (i.e. all virtual memory is resident) what TLB hit rate is required for an
average virtual memory access time of 61ns.

CS 162 Spring 2019 Section 8: Banker’s Algorithm and Address Translation

Assuming a TLB hit rate of .50, how does the average virtual memory access time of this scenario
compare to no TLB?

CS 162 Spring 2019 Section 8: Banker’s Algorithm and Address Translation

2.5 Inverted Page Tables

Why IPTs? Consider the following case:

- 64-bit virtual address space

- 4 KB page size

- 512 MB physical memory

How much space (memory) needed for a single level page table? Hint: how many entries are there?
1 per virtual page. What is the size of a page table entry? access control bits + physical page #.

How about multi level page tables? Do they serve us any better here?
What is the number of levels needed to ensure that any page table requires only a single page (4
KB)?

Linear Inverted Page Table

What is the size of of the hashtable? What is the runtime of finding a particular entry?
Assume the following:

- 16 bits for process ID

- 52 bit virtual page number (same as calculated above)

- 12 bits of access information

Hashed Inverted Page Table

What is the size of of the hashtable? What is the runtime of finding a particular entry?
Assume the following:

- 16 bits for process ID

- 52 bit virtual page number (same as calculated above)

- 12 bits of access information

CS 162 Spring 2019 Section 8: Banker’s Algorithm and Address Translation

10

