102 Dis 9

Friday, March 22,2019 9:12 AM

Section 9: Intro to I/O and File Systems

March 19, 2019

Contents

1 Warmup
1.1 Short questions L e

2 Vocabulary

3 Problems
3.1 Clock Algorithm
3.2 Disabling Interrupts L
3.3 Disks . . . o e
3.4 Memory Mapped Files o

CS 162 Fall 2019 Section 9: Intro to I/O and File Systems

1 Warmup

1.1 Short questions

1. False) If a particular IO device implements a blocking interface, then you will need multiple
threads to have Concurrent operations which use that device.

I Fhetaot 5 Hodqd = CoanF P v ayaw\

vk o call 7y dewvts, dont Lioc) Ll«uh d<ir)

-7 Cun ghl 1 ,uk
2. (T&“u For 1O devices which receive new data very frequently, it is more effi 1ent to 1nterr

the CPU than to have the CPU poll the device.

m-k(/v‘P}' i'w\ol(ar 1 Very cs(,am,w.

Jp

Wne el

3. (True @ With SSDs, writing data is straightforward and fast, whereas reading data is conTplex
and slow-

1/\)11}“55 ord C"""‘/o{'\C‘lﬁl‘wJi - }{M

4. (True/Falsé) User applications have to deal with the notion of file blocks, whereas operating systems
deal with the finer grained notion of disk sectors.

/7 Oé Ix\ohd(u "n/DCW\ ‘}'DO, Uiy 071(,7 (mrcjg abyunt

S

5. How does the OS catch a null pointer exception ? Trace every action that happens in the OS based
on what you have learned in c¢s162 so far.
Al

v D]_.q oS hundles e xoeph

T

g b T T - - - -

‘ﬁkg Mddq Mode sk Sothure '

%3\@“* o7

’ | LT-—\?OA@K

CS 162 Fall 2019 Section 9: Intro to I/O and File Systems

2 Vocabulary

I/0 In the context of operating systems, input/output (I/O) consists of the processes by which
the operating system receives and transmits data to connected devices.

Controller The operating system performs the actual I/O operations by communicating with
a device controller, which contains addressable memory and registers for communicating the the
CPU, and an interface for communicating with the underlying hardware. Communication may be
done via programmed I/0, transferring data through registers, or Direct Memory Access, which
allows the controller to write directly to memory.

Interrupt One method of notifying the operating system of a pending I/O operation is to send a
interrupt, causing an interrupt handler for that event to be run. This requires a lot of overhead,
but is suitable for handling sporadic, infrequent events.

Polling Another method of notifying the operating system of a pending I/O operating is simply
to have the operating system check regularly if there are any input events. This requires less
overhead, and is suitable for regular events, such as mouse input.

—
Response Time Response time measures the time between a requested I/O operating and its

completion, and is an important metric for determining the performance of an I/O device.

Throughput Another important metric is throughput, which measures the rate at which opera-
tions are performed over time.

Asynchronous I/0 For I/0O operations, we can have the requesting process sleep until the op-
eration is complete, or have the call return immediately and have the process continue execution
and later notify the process when the operation is complete.

Memory-Mapped File A memory-mapped file is a segment of virtual memory which has been
assigned a direct byte-for-byte correlation with some portion of a file or file-like resource. This
resource is typically a file that is physically present on-disk, but can also be a device, shared memory
object, or other resource that the operating system can reference through a file descriptor. Once
present, this correlation between the file and the memory space permits applications to treat the
mapped portion as if it were primary memory.

Memory-Mapped I/O Memory-mapped I/O (not to be confused with memory-mapped file I/O)
uses the same address bus to address both memory and I/O devices the memory and registers of
the I/O devices are mapped to (associated with) address values. So when an address is accessed
by the CPU, it may refer to a portion of physical RAM, but it can also refer to memory of the
I/O device. Thus, the CPU instructions used to access the memory can also be used for accessing
devices.

CS 162 Fall 2019 Section 9: Intro to I/O and File Systems

3 Problems
3.1 Clock Algorithm

Suppose that we have a 32-bit virtual address split as follows:

10 Bits 10 Bits | 12 Bits
Table ID | Page ID | Offset

Show the format of a PTE complete with bits required to support the clock algorithm.

For this problem,assume that physical memory can hold at most four pages. What pages remain in
memory at the end of the following sequence of page table operations and what are the use bits set to
for each of these pages:

- Page A is accessed

- Page B is accessed

- Page C is accessed

- Page A is accessed

- Page C is accessed

- Page D is accessed

- Page B is accessed

- Page D is accessed

- Page A is accessed

- Page E is accessed

- Page F is accessed

CS 162 Fall 2019 Section 9: Intro to I/O and File Systems

3.2 Disabling Interrupts

We looked at disabling CPU interrupts as a simple way to create a critical section in the kernel. Name
a drawback of this approach when it comes to I/O devices.

|
Wheal
3.3 Disks

What are the major components of disk latency? Explain each one.

=L Secfe

1) Quewn<ihg Tivne
) (s niller
)AM}\VAIZ]C . ;> S?e‘C

— hana
P e

In class we said that the operating system deals with bad or corrupted sectors. Some disk controllers
magically hide failing sectors and re-map to back-up locations on disk when a sector fails.

If you had to choose where to lay out these back-up sectors on disk - where would you put them?
e =)

y Pk D<=
l«\o(:-’",z!/\“ A4 R 3) more)Io*d‘“r T+ badk dis

2) o cofoan b be 2LF 00004 @

How do you think that the disk controller can check whether a sector has gone bad?

CLCJFO Chedesum

Can you think of any drawbacks of hiding errors like this from the operating system?

les | 1
O¢ d"@ﬂ'} ko 5 e 0(0 [(nas ove voet
dave % ‘EA?mg

CS 162 Fall 2019 Section 9: Intro to I/O and File Systems

3.4 Memory Mapped Files

Memory-mapped files, either as the fundamental way to access files or as an additional feature, is sup-
ported by most OS-s. Consider the Unix mmap system call that has the form (somewhat simplified):

void * mmap(void x addr, sizet_len, int prot, int flags, int filedes, off_t offset);

where data is being mapped from the currently open file filedes starting at the position in the file
described by offset; len is the size of the part of the file that is being mapped into the process address
space; prot describes whether the mapped part of the is readable or writable. The return value, addr, is
the address in the process address space of the mapped file region.

When the process subsequently references a memory location that has been mapped from the file
for the first time, what operations happen in the operating system? What happens upon subsequent
accesses?

Assume that you have a program that will read sequentially through a very large file, computing
some summary operation on all the bytes in the file. Compare the efficiency of performing this task
when you are using conventional read system calls versus using mmap.

Assume that you have a program that will read randomly from a very large file. Compare the
efficiency of performing this task when you are using conventional read and lseek system calls versus
using mmap.

