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1

Vocabulary

Compulsory Miss The miss that occurs on the first reference to a block. There’s essentially
nothing that you can do about this type of miss, but over the course of time, compulsory mi:
become insignificant compared to all the other memory accesses that occur.

Capacity Miss This miss occurs when the cache can’t contain all the blocks that the program
s. Usually the solution to capacity mi s to increase the cache s

ac

Conflict Miss Conflict misses occur when multiple memory locations are mapped to the same
cache location. In order to prevent conflict misses, you should either increase the cache size or
increase the ass tivity of the cache.

Coherence Miss Coherence m are caused by external processors or I/O devices that updates

what’s in memory.
‘Working set The subset of the address space that a process uses as it executes. Generally we can
say that as the cache hit rate increases, more of the working set is being added to the cache.

Thrashing Phenomenon that occurs when a computer’s virtual memory subsystem is constantly
paging (exchanging data in memory for data on disk). This can lead to significant application
slowdown.
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2.1 Caching

An up-and-coming big data startup has just hired you do help design their new memory system for a
byte-addressable system. Suppose the virtual and physical memory address space is 32 bits with a 4KB
page size.

First, you create 1) a direct mapped cache and 2) a fully associative cache of the same size that
replaces the least recently used pages when the cache is full. You run a few tests and realize that the
fully associative cache performs much worse than the direct mapped cache. What’s a possible access
pattern that could cause this to happen?

Y F we aleexs Xt AIFE bloks = &

would you split a given virtual address into its tag, index, and offset numbers? [A

>
5
OHsel: 6 2°6 e (my2® =6
== = L
T nohex : Q) ~C° 2

Tag : 30 20:6:¢ 2° 7. 32-0-C=

J
You finish building the cache, and you want to show your boss that there was a significant improve-
ment in average read time. Suppose your system uses a two level page table to translate virtual addresses
and your system uses the cache for the translation tables and data. Each memory access takes 50ns, the
cache lookup time is 5ns, and your cache hit rate is 90%. What is the zwcragoMcation
Y — —_—
from memory?

AMET = Cns + 0. (S0ns)= [Ons
3 accessess 2 unslabon, | Ao
2. [0ns = |'§Oy:r)

ﬁwtead. your boss tells you to build a 8KB 2-way set associative cache with 64 byte cache blocks.
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2.2 Clock Algorithm <5 20

Suppose that we have a 32-bit virtual address split as follows: =i

12 Bits

10 Bits 10 Bits
Offset

Table ID | Page ID

Show the format of a PTE complete with bits required to support the clock algorithm.
X
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U

For this problem,assume that physical memory can hold at most four pages. What pages remain in PF
memory at the end of the following sequence of page table operations and what are the use bi t to [_)_V’\_’

for each of th
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2.3 Demand Paging

Your boss has been so impressed with your work designing the caching that he has asked for your advice
on designing a TLB to use for this system. Suppose you know that there will only be 4 processes
running at the same time, each with a Resident Set Size (RSS) of 512MB and a working set size of
256KB. Assuming the same system as the previous problem (32 bit virtual and physical address space,
4KB page size), what is the minimum amount of TLB entries that your system would need to support
to be able to map/cache the working set size for one process? What happens if you have more entries?
‘What about less?

Suppose you run some benchmarks on the system and you see that the system is utilizing over 99% of
its paging disk IO capacity, but only 10% of its CPU. What is a combination of the of disk space and
memory size that can cause this to occur? Assume you have TLB entries equal to the answer from the
previous part.

Out of increasing the size of the TLB, adding more disk space, and adding more memory, which one
would lead to the largest performance increase and why?
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2.4 Virtual Memory

vmstat is a Linux performance debugging tool that provides information about virtual memory on
your system. When you run it, the output looks like this:

$ vmstat 1

procs memory ---swap-- ----- io---- -system-- ------ cpu-----
r b swpd free Dbuff cache si so bi bo in cs us sy id wa st
10 0 174184 1007372 96316 49 642 3095 678 123 128 0 199 0 O
0 0 0 174240 1007372 96316 0 0 0 0O 48 8 0 0100 0 O
0 0 0 174240 1007372 96316 0 0 0 0O 3 75 0 0100 0 O
[ 0 174240 1007372 96316 0 0 0 0O 32 73 0 0100 0 O

The 1 means “recompute the stats every 1 second and print them out”. The first line contains the
average values since boot time, while the second line contains the averages of the last second (current
averages). Here’s a reference for what each one of the columns means.

Procs
T

: The number of runnable processes (running or waiting for run time).

b: The number of processes in uninterruptible sleep.

Memory

swpd: the amount of virtual memory used.

free: the amount of idle memory.

buff: the amount of memory used as buffers.

cache: the amount of memory used as cache.

inact: the amount of inactive memory. (-a option)
active: the amount of active memory. (-a option)

Swap
si:
so:

I0
bi:
bo:

System
in:
cs:

CPU

Amount of memory swapped in from disk (/s).
Amount of memory swapped to disk (/s).

Blocks received from a block device (blocks/s).
Blocks sent to a block device (blocks/s).

The number of interrupts per second, including the clock.
The number of context switches per second.

These are percentages of total CPU time.

us:
syt
id:
wa:
st:

Time
Time
Time
Time
Time

spent running non-kernel code. (user time, including nice time)
spent running kernel code. (system time)

spent idle. Prior to Linux 2.5.41, this includes I0-wait time.
spent waiting for I0. Prior to Linux 2.5.41, included in idle.
stolen from a virtual machine. Prior to Linux 2.6.11, unknown.
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Take a look at these 3 programs (A, B, C).

char *buffer[4 * (1L << 20)];

int A(int in) {
// "in" is a file descriptor for a file on disk
while (read(in, buffer, sizeof (buffer)) > 0);

int BO) {
size_t size = 5 * (1L << 30);
int *x = malloc(size);
memset (x, 0xCC, size);

}

sem_t sema;
pthread_t thread;
void *foo() { while (1) sem_wait(&sema); }
int CO {
pthread_create(¢thread, NULL, foo, NULL);
vhile (1) sem_post(&sema);

}

I ran these 3 programs one at a time, but in a random order. What order did I run them in? Can you
tell where (in the vmstat output) one program stopped and another started? Explain.

procs

y
T swpd free buff cache si so bi bo in cs us sy id wa st

b
0 0 684688 25216 1822136 60860 75 748 3645 779 146 296 1 198 0 O
1 0 684688 25268 1822136 60868 0 0 0 0 18150 735898 6 44 51 0 O
1 0 684688 25268 1822136 60868 0 0 0 0 61864 1270088 6 77 17 0 O
1 0 684688 25268 1822136 60868 0 0 0 0 59497 1102825 8 7121 0 O
1 0 684688 25268 1822136 60868 0 0 0 0 94619 766431 11 79 10 0 0
0 0 684688 25612 1822136 60868 0 0 0 0 13605 237430 2 1385 0 0O
0 0 684688 25612 1822136 60868 0 0 0 0 61 115 0 1100 0 O
3 0 694520 18544 3212 45040 64 11036 264 11144 2647 2339 5 5143 0 0
4 1 1285828 20560 128 580 88 592440 14248 592440 18289 2171 3 58 36 4 O
3 0 1866176 21492 128 2132 0 578404 8972 578404 47646 1691 270 28 1 O
3 0 2350636 17820 136 2640 0 487732 11708 487788 17404 1881 168 39 1 0
2 0 2771016 22168 544 4360 2072 417272 15372 417272 17460 2192 2 57 39 3 0
0 0 697036 1922160 560 9712 1516 418224 16508 418228 47747 2616 0 64 30 6 O
0 0 697032 1921696 564 10096 28 0 288 0 77 148 0 0100 0 O
1 0 696980 878128 1037720 11272 412 0 1038840 0 11128 14854 1 25 54 21 O
1 0 696980 21732 1895476 9348 0 0 1286460 0 13610 18224 0 31 46 22 0
0 2 696980 20992 1896496 9072 0 0 1297536 20 13745 19164 0 36 43 21 1
1 1 696980 20228 1897784 8648 0 0 1283324 32 13659 18931 0 36 41 23 0
1 1 696960 21048 1897404 8716 48 0 1215152 0 12601 17672 0 34 45 21 0
0 0 696952 23048 1899112 9004 8 0 470112 0 5100 7073 0 13 81 6 0
0 0 696952 23048 1899112 9004 0 0 0 0 45 8 0 0100 0 O
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If you have extra available physical memory, Linux will use it to cache files on disk for performance
benefits. This disk cache may also include parts of the swapfile. Why would caching the swapfile be
better than paging-in those pages immediately?

If T remove the line “memset (x, 0xCC, size);” from program B, I notice that the vimstat output does
not have a spike in swap (si and so) nor in io (bi and bo). My system doesn’t have enough physical
memory for a 5GB array. Yet, the array is not swapped out to disk. Where does the array go? Why
did the memset make a difference?

Program B has a 5GB array, but the whole thing just contains 0xCCCCCCCC. Based on this observation,
can you think of a way to reduce program B’s memory footprint without changing any of program B’s
code? (What can the kernel do to save memory?)
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2.5 Wait and Exit

This problem is designed to help you with implementing wait and exit in your project. Recall that wait
suspends execution of the parent process until the child process specified by the parameter id exits, upon
which it returns the exit code of the child process. In Pintos, there is a 1:1 mapping between processes
and threads.

2.5.1 Thinking about what you need to do

"wait” requires communication between a process and its children, usually implemented through shared
data. The shared data might be added to struct thread, but many solutions separate it into a separate
structure. At least the following must be shared between a parent and each of its children:

- Child’s exit status, so that "wait” can return it.

- Child’s thread id, for "wait” to compare against its argument.

- A way for the parent to block until the child dies (usually a semaphore).

- A way for the parent and child to tell whether the other is already dead, in a race-| f;:J fashion (to

ensure that their shared data can be freed).
Chit © pocnt

Data structures to add to thread.h for waiting logic: ‘L
ey
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2.5.2 Code
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3 Calling Conventions and Argument Passing

3.1 Calling Conventions
Sketch the stack frame of helper before it returns.

void helper(char* str, int len) {
char word[len];

strncpy (word, str, len);

printf (" , word);

return;

int main(int argc, char *argv[]) {
char* str = "Hello World!";
helper(str, 13);
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